Conference Paper
BibTex RIS Cite

GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ

Year 2019, Volume: 8 Issue: 3, 138 - 148, 20.12.2019
https://doi.org/10.28948/ngumuh.633157

Abstract

Bu çalışmada, genelleştirilmiş
bir kübik elastik ortamda yayılan uzun ve kısa boyuna dalgalar arasındaki
etkileşime yüksek mertebe doğrusal olmayan ve dispersif etkilerin katkısı
incelenmiştir. Bu amaçla, ilk olarak, yüksek mertebe doğrusal olmayan ve
dispersif etkileri içeren kısa boyuna dalganın evrimini tanımlayan yüksek
mertebe nonlineer Schrödinger denklemi indirgeyici pertürbasyon yöntemi
kullanılarak türetildi. Daha sonra, uzun boyuna dalganın faz hızının kısa
boyuna dalganın grup hızına eşit olduğu durumlarda etkileşimin tanımlanması
için yüksek mertebeden uzun boyuna dalga ve kısa boyuna dalga denklemleri
bulundu. Buna ek olarak, Jacobi eliptik fonksiyon açılımı yöntemi, etkileşim
denklemlerinin özel çözümlerini sunmak için kullanıldı.

References

  • [1] KORTEWRG, D. J., de VRIES, F., “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine, 39, 422-443, 1895.
  • [2] GARDNER, C. S., MORIKAWA, G. K., Similarity in the Asymptotic Behavior of Collision-free Hydromagnetic Waves and Water Waves Courant Institute of Mathematical Sciences Report, New York University, TID-6184, 1960.
  • [3] WIJNGAARDEN, L. van., “On the Equations of Motion for Mixtures of Liquid and Gas Bubbles”, Journal of Fluid Mechanics, 33, 465-474, 1968.
  • [4] DRAZIN, P. G., JOHNSON, R. S., Solitons: An Introduction, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1989.
  • [5] ERBAY, H. A., “Nonlinear Transverse Waves in a Generalized Elastic Solid and the Complex Modified Korteweg-de Vries Equation”, Physica Scripta, 58, 9-14, 1998.
  • [6] HASIMOTO, H., ONO, H., “Nonlinear Modulation of Gravity Waves”, Journal of the Physical Society of Japan, 33, 805-811, 1972.
  • [7] ZAKHAROV, V. E., “The Collapse of Langmuir Waves”, Journal of Experimental and Theoretical Physics, 62, 5, 1972.
  • [8] ERBAY, S., ERBAY, H. A., DOST, S., “Nonlinear Wave Modulation in Micropolar Elastic Media-I. Longitudinal waves”, International Journal of Engineering Science, 29, 859-868, 1991.
  • [9] ABLOWITZ, M. J., CLARKSON, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 1992.
  • [10] GUMEROV, N. A., “On Quasimonochromatic Weakly Non-linear Waves in a Bubbly Medium with a Small Dissipation”, PriM. Mat. Mekh., 56, 58-67, 1992.
  • [11] BENNEY, D. J., “Significant Interactions Between Small and Large Scale Surface Waves”, Studies in Applied Mathematics, 55, 93-106, 1976.
  • [12] BENNEY, D. J., “A General Theory for Interactions Between Short and Long Waves”, Studies in Applied Mathematics, 56, 81-94, 1977.
  • [13] DJORDJEVIC, V. D., REDEKOPE L. G., “On Two-dimensional Packets of Capillary Gravity Waves”, Journal of Fluid Mechanics., 79, 703-714, 1977.
  • [14] ERBAY, S., “Nonlinear Interaction Between Long and Short Waves in a Generalized Elastic Solid”, Chaos, Solitons and Fractals, 11, 1789-1789, 2000.
  • [15] KODAMA, Y., “Optical Solitons in a Monomode Fiber”, Journal of Statistical Physics, 39, 597-614, 1985.
  • [16] KODAMA, Y., HASEGAWA, A., “Nonlinear Pulse Propagation in a Monomode Dielectric Guide”, IEEE Journal of Quantum Electronics, 23, 510-524, 1987.
  • [17] HACINLIYAN, I., ERBAY, S., “A Higher-Order Model for Transverse Waves in a generalized elastic Solid”, Chaos, Solitons and Fractals, 14, 1127-1135, 2002.
  • [18] AKHATOV, I. SH., KHISMATULLIN, D. B., “Long-wave-short-wave Interaction in Bubbly Liquid”, Journal of Applied Mathematics and Mechanics, 63, 917-926, 1999.
  • [19] SUHUBİ, E.S., ERINGEN A.C., “Nonlinear Theory of Micro-elastic Solids II”, International Journal of Engineering Science, 2, 389-404, 1964.
  • [20] EROFEYEV, V. I., POTAPOV, A. I., “Longitudinal Strain Waves in Non-linearly Elastic Media with Couple Stresses”, International Journal of Non-Linear Mechanics. 28, 483-488, 1993.
  • [21] JEFFREY, A., KAWAHARA, T., Asymptotic Methods in Nonlinear Wave Theory, Pitman, 1982.
  • [22] TANIUTI, T., “Reductive Perturbation Method and Far Fields of Wave Equations”, Progress of Theoretical Physics Supplements, 55, 1, 1974.
  • [23] LIU, S., FU, Z., LIU, S., ZHAO, Q., “Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations”, Physics Letters A, 289, 69-74, 2001.
  • [24] TIAN, Y. H., CHEN, H.L, LIU, X. Q., “New Exact Solutions to Long-Short Wave Interaction Equations”, Communications in Theoretical Physics, 46, 397-402, 2006.
  • [25] ALOFI, A. S., “Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations”, International Mathematical Forum, 53, 2639-2649, 2012.
Year 2019, Volume: 8 Issue: 3, 138 - 148, 20.12.2019
https://doi.org/10.28948/ngumuh.633157

Abstract

References

  • [1] KORTEWRG, D. J., de VRIES, F., “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine, 39, 422-443, 1895.
  • [2] GARDNER, C. S., MORIKAWA, G. K., Similarity in the Asymptotic Behavior of Collision-free Hydromagnetic Waves and Water Waves Courant Institute of Mathematical Sciences Report, New York University, TID-6184, 1960.
  • [3] WIJNGAARDEN, L. van., “On the Equations of Motion for Mixtures of Liquid and Gas Bubbles”, Journal of Fluid Mechanics, 33, 465-474, 1968.
  • [4] DRAZIN, P. G., JOHNSON, R. S., Solitons: An Introduction, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1989.
  • [5] ERBAY, H. A., “Nonlinear Transverse Waves in a Generalized Elastic Solid and the Complex Modified Korteweg-de Vries Equation”, Physica Scripta, 58, 9-14, 1998.
  • [6] HASIMOTO, H., ONO, H., “Nonlinear Modulation of Gravity Waves”, Journal of the Physical Society of Japan, 33, 805-811, 1972.
  • [7] ZAKHAROV, V. E., “The Collapse of Langmuir Waves”, Journal of Experimental and Theoretical Physics, 62, 5, 1972.
  • [8] ERBAY, S., ERBAY, H. A., DOST, S., “Nonlinear Wave Modulation in Micropolar Elastic Media-I. Longitudinal waves”, International Journal of Engineering Science, 29, 859-868, 1991.
  • [9] ABLOWITZ, M. J., CLARKSON, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 1992.
  • [10] GUMEROV, N. A., “On Quasimonochromatic Weakly Non-linear Waves in a Bubbly Medium with a Small Dissipation”, PriM. Mat. Mekh., 56, 58-67, 1992.
  • [11] BENNEY, D. J., “Significant Interactions Between Small and Large Scale Surface Waves”, Studies in Applied Mathematics, 55, 93-106, 1976.
  • [12] BENNEY, D. J., “A General Theory for Interactions Between Short and Long Waves”, Studies in Applied Mathematics, 56, 81-94, 1977.
  • [13] DJORDJEVIC, V. D., REDEKOPE L. G., “On Two-dimensional Packets of Capillary Gravity Waves”, Journal of Fluid Mechanics., 79, 703-714, 1977.
  • [14] ERBAY, S., “Nonlinear Interaction Between Long and Short Waves in a Generalized Elastic Solid”, Chaos, Solitons and Fractals, 11, 1789-1789, 2000.
  • [15] KODAMA, Y., “Optical Solitons in a Monomode Fiber”, Journal of Statistical Physics, 39, 597-614, 1985.
  • [16] KODAMA, Y., HASEGAWA, A., “Nonlinear Pulse Propagation in a Monomode Dielectric Guide”, IEEE Journal of Quantum Electronics, 23, 510-524, 1987.
  • [17] HACINLIYAN, I., ERBAY, S., “A Higher-Order Model for Transverse Waves in a generalized elastic Solid”, Chaos, Solitons and Fractals, 14, 1127-1135, 2002.
  • [18] AKHATOV, I. SH., KHISMATULLIN, D. B., “Long-wave-short-wave Interaction in Bubbly Liquid”, Journal of Applied Mathematics and Mechanics, 63, 917-926, 1999.
  • [19] SUHUBİ, E.S., ERINGEN A.C., “Nonlinear Theory of Micro-elastic Solids II”, International Journal of Engineering Science, 2, 389-404, 1964.
  • [20] EROFEYEV, V. I., POTAPOV, A. I., “Longitudinal Strain Waves in Non-linearly Elastic Media with Couple Stresses”, International Journal of Non-Linear Mechanics. 28, 483-488, 1993.
  • [21] JEFFREY, A., KAWAHARA, T., Asymptotic Methods in Nonlinear Wave Theory, Pitman, 1982.
  • [22] TANIUTI, T., “Reductive Perturbation Method and Far Fields of Wave Equations”, Progress of Theoretical Physics Supplements, 55, 1, 1974.
  • [23] LIU, S., FU, Z., LIU, S., ZHAO, Q., “Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations”, Physics Letters A, 289, 69-74, 2001.
  • [24] TIAN, Y. H., CHEN, H.L, LIU, X. Q., “New Exact Solutions to Long-Short Wave Interaction Equations”, Communications in Theoretical Physics, 46, 397-402, 2006.
  • [25] ALOFI, A. S., “Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations”, International Mathematical Forum, 53, 2639-2649, 2012.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Others
Authors

İrma Hacınlıyan 0000-0001-7076-2172

Publication Date December 20, 2019
Submission Date October 15, 2019
Acceptance Date November 28, 2019
Published in Issue Year 2019 Volume: 8 Issue: 3

Cite

APA Hacınlıyan, İ. (2019). GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(3), 138-148. https://doi.org/10.28948/ngumuh.633157
AMA Hacınlıyan İ. GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ. NOHU J. Eng. Sci. December 2019;8(3):138-148. doi:10.28948/ngumuh.633157
Chicago Hacınlıyan, İrma. “GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8, no. 3 (December 2019): 138-48. https://doi.org/10.28948/ngumuh.633157.
EndNote Hacınlıyan İ (December 1, 2019) GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8 3 138–148.
IEEE İ. Hacınlıyan, “GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ”, NOHU J. Eng. Sci., vol. 8, no. 3, pp. 138–148, 2019, doi: 10.28948/ngumuh.633157.
ISNAD Hacınlıyan, İrma. “GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 8/3 (December 2019), 138-148. https://doi.org/10.28948/ngumuh.633157.
JAMA Hacınlıyan İ. GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ. NOHU J. Eng. Sci. 2019;8:138–148.
MLA Hacınlıyan, İrma. “GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 8, no. 3, 2019, pp. 138-4, doi:10.28948/ngumuh.633157.
Vancouver Hacınlıyan İ. GENELLEŞTİRİLMİŞ ELASTİK ORTAMDAKİ YÜKSEK MERTEBE UZUN BOYUNA DALGA VE KISA BOYUNA DALGA DENKLEMLERİ. NOHU J. Eng. Sci. 2019;8(3):138-4.

download