Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 9 Sayı: 1, 576 - 588, 30.01.2020
https://doi.org/10.28948/ngumuh.539958

Öz

Kaynakça

  • [1] SOLTANI, S., KHOSROSHAHI, R.A., MOUSAVIAN, R.T., JIANG, Z.Y., BOOSTANI, A.F., BRABAZON, D., “Stir Casting Process for Manufacture of Al–SiC Composites”, Rare Metals, 36(7), 581-590, 2017.
  • [2] RAMNATH, B.V., ELANCHEZHIAN, C., ANNAMALAI, R.M., ARAVIND, S., ATREYA, T.S.A., VIGNESH, V., SUBRAMANIAN, C., “Aluminium Metal Matrix Composites - A Review”, Reviews on Advanced Materials Science, 38, 55-60, 2014.
  • [3] IZADI, H., NOLTING, A., MUNRO, C., BISHOP, D.P., PLUCKNETT, K.P., GERLICH, A.P., “Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy”, 213, 1900-1907, 2013.
  • [4] TENG, F., YU, K., LUO, J., FANG, H., SHI, C., DAI, Y., XIONG, H., “Microstructures and Properties of Al−50%Sic Composites for Electronic Packaging Applications”, Transactions of Nonferrous Metals Society of China, 26, 2647-2652, 2016.
  • [5] ZHANG, L., XU, H., WANG, Z., LI, Q., WU, J., “Mechanical Properties and Corrosion Behavior of Al/SiC Composites”, Journal of Alloys and Compounds, 678, 23-30, 2016.
  • [6] ZEBARJAD, S.M., SAJJADI, S.A., “Microstructure Evaluation of Al–Al2O3 Composite Produced by Mechanical Alloying Method”, Materials and Design, 27, 684–688, 2006.
  • [7] RAHIMIAN, M., EHSANI, N., PARVIN, N., BAHARVANDI, H., “The Effect of Particle Size, Sintering Temperature and Sintering Time on The Properties of Al–Al2O3 Composites, Made by Powder Metallurgy”, Journal of Materials Processing Technology, 209, 5387–5393, 2009.
  • [8] ZEBARJAD S.M., SAJJADI S.A., “Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al–Al2O3 Composite on Milling Time”, Materials and Design, 28, 2113–2120, 2007.
  • [9] AL-QUTUB, A.M., ALLAM, I.M., ABDUL SAMAD M.A., “Wear and Friction of Al–Al2O3 Composites at Various Sliding Speeds”, Journal of Materials Science, 43, 5797-5803, 2008.
  • [10] GHASALI, E., ALIZADEH, M., EBADZADEH. T., “Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite”, Journal of Alloys and Compounds, 655, 93-98, 2016.
  • [11] NIETO, A., YANG, H., JIANG, L., SCHOENUNG, J.M., “Reinforcement Size Effects on The Abrasive Wear of Boron Carbide Reinforced Aluminum Composites”, Wear, 390–391, 228–235, 2017.
  • [12] SHIRVANIMOGHADDAM, K., KHAYYAM, H., ABDIZADEH, H., KARBALAEI AKBARI M., PAKSERESHT, A.H., GHASALI, E., NAEBE, M., “Boron Carbide Reinforced Aluminium Matrix Composite: Physical, Mechanical Characterization and Mathematical Modelling”, Materials Science & Engineering A, 658, 135-149, 2016.
  • [13] GUO, H., ZHANG, Z., “Processing and Strengthening Mechanisms of Boron Carbide-Reinforced Aluminum Matrix Composites”, Materials Today, 73:2, 62-67, 2018.
  • [14] LI, P., KANDALOVA, E.G., NIKITIN, V.I., MAKARENKO, A.G., LUTS, A.R., YANFEI, Z., “Preparation of Al–TiC Composites by Self-Propagating High-Temperature Synthesis, Scripta Materialia” 49, 699–703, 2003.
  • [15] KENNEDY, A.R., WESTON, D.P., JONES M.I., “Reaction in Al–TiC Metal Matrix Composites” Materials Science and Engineering A, 316, 32–38, 2001.
  • [16] KARANTZALIS, A.E., WYATT, S., KENNEDY, AR., “The Mechanical Properties of Al-TiC Metal Matrix Composites Fabricated by A Flux-Casting Technique”, Materials Science and Engineering A, 237, 200-206, 1997.
  • [17] MOHAPATRA, S., CHAUBEY, A.K., MISHRA, D.K., SINGH, S.K., “Fabrication of Al–TiC Composites by Hot Consolidation Technique: Its Microstructure and Mechanical Properties,” Journal of Materials Research and Technology, 5(2):117–122, 2016.
  • [18] RAMACHANDRA, M., ABHISHEK, A., SIDDESHWAR, P., BHARATHI, V., “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy”, Procedia Materials Science, 10, 212-219, 2015.
  • [19] ABOU EL-KHAIR, M.T., ABDEL AAL A., “Erosion–Corrosion and Surface Protection of A356 Al/ZrO2 Composites Produced by Vortex And Squeeze Casting”, Materials Science and Engineering A, 454–455, 156–163, 2007.
  • [20] ZHOU, W., YAMAGUCHI, T., KIKUCHI, K., NOMURA, N., KAWASAKI, A., “Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites”, Acta Materialia, 125, 369-376, 2017.
  • [21] ZAKARIA, H.M. “Microstructural and Corrosion Behavior of Al/SiC Metal Matrix Composites”, Ain Shams Engineering Journal, 5, 831–838, 2014.
  • [22] HAN, Y.M., CHEN, X.G., “Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution”, Materials, 2015, 8, 6455-6470.
  • [23] HASSAN, S.F., “Effect of Primary Processing Techniques on the Microstructure and Mechanical Properties of Nano-Y2O3 Reinforced Magnesium Nanocomposites”, Materials Science and Engineering A, 528, 5484–5490, 2011.
  • [24] PEREZ, O.R., VALDEZ, S., MOLINA, A., MEJIA-SINTILLO, S., GARCIA-PEREZ, C., SALINAS-BRAVO, V. M., GONZALEZ-RODRIGUEZ, J.G., “Corrosion Behavior of Al–Mg–Zn-Si Alloy Matrix Composites Reinforced with Y₂O₃ in 3.5% NaCl Solution”, International Journal of Electrochemical Science, 12, 7300-7311, 2017.
  • [25] AYDIN, F., SUN, Y., “Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate Reinforced Magnesium Matrix Composites”, Canadian Metallurgical Quarterly, 57:4, 455-469, 2018.
  • [26] AYDIN, F., SUN, Y., TURAN, M.E., “The Effect of TiB2 Content on Wear and Mechanical Behavior of AZ91 Magnesium Matrix Composites Produced By Powder Metallurgy”, Powder Metallurgy and Metal Ceramics, 564-572, 2019.
  • [27] A. Standard, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annu. Book ASTM Stand. ASTM Int.West Conshohocken PA 3 (2006) G102–G189.
  • [28] SHARMA, S.C., “A Study on Stress Corrosion Behavior of Al6061/Albite Composite in Higher Temperature Acidic Medium Using Autoclave”, Corrosion Science, 43, 1877-1889, 2001.

TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ

Yıl 2020, Cilt: 9 Sayı: 1, 576 - 588, 30.01.2020
https://doi.org/10.28948/ngumuh.539958

Öz

Bu çalışmada, Al / Y2O3 metal matrisli
nanokompozitleri ( %2 ve %4 ağ.) toz metalurjisi ile üretilmiştir. Üretilen
numunelerin mikroyapı ve yoğunlukları incelenmiştir. Mikroyapı karakterizasyonu
partiküllerin homojen dağıldığını göstermiştir. Ayrıca, numunelerin korozyon
davranışları, 20ºC ve 50ºC’de 1 M HCl çözeltisinde potansiyodinamik ve daldırma
testleriyle sistematik olarak incelenmiştir. Korozyon mekanizmalarını anlamak
için, SEM çalışması gerçekleştirilmiştir. Potansiyodinamik korozyon test
sonuçları,  Al / 4Y2O3 kompozitinin
oda sıcaklığında en iyi korozyon performansına sahip olduğunu göstermiştir. Daldırma
testi sonunda, yüksek sıcaklıkta (
50 ºC), kompozitlerin ağırlık kayıplarının saf Al’a
göre fazla olduğu gözlenmiştir. Oyuklanma ve tane sınırı korozyonu
gözlenmiştir.

Kaynakça

  • [1] SOLTANI, S., KHOSROSHAHI, R.A., MOUSAVIAN, R.T., JIANG, Z.Y., BOOSTANI, A.F., BRABAZON, D., “Stir Casting Process for Manufacture of Al–SiC Composites”, Rare Metals, 36(7), 581-590, 2017.
  • [2] RAMNATH, B.V., ELANCHEZHIAN, C., ANNAMALAI, R.M., ARAVIND, S., ATREYA, T.S.A., VIGNESH, V., SUBRAMANIAN, C., “Aluminium Metal Matrix Composites - A Review”, Reviews on Advanced Materials Science, 38, 55-60, 2014.
  • [3] IZADI, H., NOLTING, A., MUNRO, C., BISHOP, D.P., PLUCKNETT, K.P., GERLICH, A.P., “Friction Stir Processing of Al/SiC Composites Fabricated by Powder Metallurgy”, 213, 1900-1907, 2013.
  • [4] TENG, F., YU, K., LUO, J., FANG, H., SHI, C., DAI, Y., XIONG, H., “Microstructures and Properties of Al−50%Sic Composites for Electronic Packaging Applications”, Transactions of Nonferrous Metals Society of China, 26, 2647-2652, 2016.
  • [5] ZHANG, L., XU, H., WANG, Z., LI, Q., WU, J., “Mechanical Properties and Corrosion Behavior of Al/SiC Composites”, Journal of Alloys and Compounds, 678, 23-30, 2016.
  • [6] ZEBARJAD, S.M., SAJJADI, S.A., “Microstructure Evaluation of Al–Al2O3 Composite Produced by Mechanical Alloying Method”, Materials and Design, 27, 684–688, 2006.
  • [7] RAHIMIAN, M., EHSANI, N., PARVIN, N., BAHARVANDI, H., “The Effect of Particle Size, Sintering Temperature and Sintering Time on The Properties of Al–Al2O3 Composites, Made by Powder Metallurgy”, Journal of Materials Processing Technology, 209, 5387–5393, 2009.
  • [8] ZEBARJAD S.M., SAJJADI S.A., “Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al–Al2O3 Composite on Milling Time”, Materials and Design, 28, 2113–2120, 2007.
  • [9] AL-QUTUB, A.M., ALLAM, I.M., ABDUL SAMAD M.A., “Wear and Friction of Al–Al2O3 Composites at Various Sliding Speeds”, Journal of Materials Science, 43, 5797-5803, 2008.
  • [10] GHASALI, E., ALIZADEH, M., EBADZADEH. T., “Mechanical and Microstructure Comparison Between Microwave and Spark Plasma Sintering of Al-B4C Composite”, Journal of Alloys and Compounds, 655, 93-98, 2016.
  • [11] NIETO, A., YANG, H., JIANG, L., SCHOENUNG, J.M., “Reinforcement Size Effects on The Abrasive Wear of Boron Carbide Reinforced Aluminum Composites”, Wear, 390–391, 228–235, 2017.
  • [12] SHIRVANIMOGHADDAM, K., KHAYYAM, H., ABDIZADEH, H., KARBALAEI AKBARI M., PAKSERESHT, A.H., GHASALI, E., NAEBE, M., “Boron Carbide Reinforced Aluminium Matrix Composite: Physical, Mechanical Characterization and Mathematical Modelling”, Materials Science & Engineering A, 658, 135-149, 2016.
  • [13] GUO, H., ZHANG, Z., “Processing and Strengthening Mechanisms of Boron Carbide-Reinforced Aluminum Matrix Composites”, Materials Today, 73:2, 62-67, 2018.
  • [14] LI, P., KANDALOVA, E.G., NIKITIN, V.I., MAKARENKO, A.G., LUTS, A.R., YANFEI, Z., “Preparation of Al–TiC Composites by Self-Propagating High-Temperature Synthesis, Scripta Materialia” 49, 699–703, 2003.
  • [15] KENNEDY, A.R., WESTON, D.P., JONES M.I., “Reaction in Al–TiC Metal Matrix Composites” Materials Science and Engineering A, 316, 32–38, 2001.
  • [16] KARANTZALIS, A.E., WYATT, S., KENNEDY, AR., “The Mechanical Properties of Al-TiC Metal Matrix Composites Fabricated by A Flux-Casting Technique”, Materials Science and Engineering A, 237, 200-206, 1997.
  • [17] MOHAPATRA, S., CHAUBEY, A.K., MISHRA, D.K., SINGH, S.K., “Fabrication of Al–TiC Composites by Hot Consolidation Technique: Its Microstructure and Mechanical Properties,” Journal of Materials Research and Technology, 5(2):117–122, 2016.
  • [18] RAMACHANDRA, M., ABHISHEK, A., SIDDESHWAR, P., BHARATHI, V., “Hardness and Wear Resistance of ZrO2 Nano Particle Reinforced Al Nanocomposites Produced by Powder Metallurgy”, Procedia Materials Science, 10, 212-219, 2015.
  • [19] ABOU EL-KHAIR, M.T., ABDEL AAL A., “Erosion–Corrosion and Surface Protection of A356 Al/ZrO2 Composites Produced by Vortex And Squeeze Casting”, Materials Science and Engineering A, 454–455, 156–163, 2007.
  • [20] ZHOU, W., YAMAGUCHI, T., KIKUCHI, K., NOMURA, N., KAWASAKI, A., “Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites”, Acta Materialia, 125, 369-376, 2017.
  • [21] ZAKARIA, H.M. “Microstructural and Corrosion Behavior of Al/SiC Metal Matrix Composites”, Ain Shams Engineering Journal, 5, 831–838, 2014.
  • [22] HAN, Y.M., CHEN, X.G., “Electrochemical Behavior of Al-B4C Metal Matrix Composites in NaCl Solution”, Materials, 2015, 8, 6455-6470.
  • [23] HASSAN, S.F., “Effect of Primary Processing Techniques on the Microstructure and Mechanical Properties of Nano-Y2O3 Reinforced Magnesium Nanocomposites”, Materials Science and Engineering A, 528, 5484–5490, 2011.
  • [24] PEREZ, O.R., VALDEZ, S., MOLINA, A., MEJIA-SINTILLO, S., GARCIA-PEREZ, C., SALINAS-BRAVO, V. M., GONZALEZ-RODRIGUEZ, J.G., “Corrosion Behavior of Al–Mg–Zn-Si Alloy Matrix Composites Reinforced with Y₂O₃ in 3.5% NaCl Solution”, International Journal of Electrochemical Science, 12, 7300-7311, 2017.
  • [25] AYDIN, F., SUN, Y., “Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate Reinforced Magnesium Matrix Composites”, Canadian Metallurgical Quarterly, 57:4, 455-469, 2018.
  • [26] AYDIN, F., SUN, Y., TURAN, M.E., “The Effect of TiB2 Content on Wear and Mechanical Behavior of AZ91 Magnesium Matrix Composites Produced By Powder Metallurgy”, Powder Metallurgy and Metal Ceramics, 564-572, 2019.
  • [27] A. Standard, Standard practice for calculation of corrosion rates and related information from electrochemical measurements, Annu. Book ASTM Stand. ASTM Int.West Conshohocken PA 3 (2006) G102–G189.
  • [28] SHARMA, S.C., “A Study on Stress Corrosion Behavior of Al6061/Albite Composite in Higher Temperature Acidic Medium Using Autoclave”, Corrosion Science, 43, 1877-1889, 2001.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Malzeme ve Metalürji Mühendisliği
Yazarlar

Fatih Aydın 0000-0002-0768-7162

Yayımlanma Tarihi 30 Ocak 2020
Gönderilme Tarihi 14 Mart 2019
Kabul Tarihi 21 Kasım 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 1

Kaynak Göster

APA Aydın, F. (2020). TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 576-588. https://doi.org/10.28948/ngumuh.539958
AMA Aydın F. TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. Ocak 2020;9(1):576-588. doi:10.28948/ngumuh.539958
Chicago Aydın, Fatih. “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, sy. 1 (Ocak 2020): 576-88. https://doi.org/10.28948/ngumuh.539958.
EndNote Aydın F (01 Ocak 2020) TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 576–588.
IEEE F. Aydın, “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”, NÖHÜ Müh. Bilim. Derg., c. 9, sy. 1, ss. 576–588, 2020, doi: 10.28948/ngumuh.539958.
ISNAD Aydın, Fatih. “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (Ocak 2020), 576-588. https://doi.org/10.28948/ngumuh.539958.
JAMA Aydın F. TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2020;9:576–588.
MLA Aydın, Fatih. “TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 9, sy. 1, 2020, ss. 576-88, doi:10.28948/ngumuh.539958.
Vancouver Aydın F. TOZ METALURJİSİ İLE ÜRETİLMİŞ Al / Y2O3 NANOKOMPOZİTLERİNİN ODA VE YÜKSEK SICAKLIKTAKİ KOROZYON DAVRANIŞININ İNCELENMESİ. NÖHÜ Müh. Bilim. Derg. 2020;9(1):576-88.

download