Research Article
BibTex RIS Cite

MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI

Year 2020, Volume: 9 Issue: 1, 146 - 153, 30.01.2020
https://doi.org/10.28948/ngumuh.607378

Abstract

   Bu çalışmada, asenkron motorların
hız-algılayıcısız kontrolü için modele uyarlamalı sistem temelli model öngörülü
moment kontrollü sürücü sisteminin tasarımı gerçekleştirilmiş ve önerilen
sürücü sistemi farklı çalışma koşulları altında benzetim çalışmaları ile
doğrulanmıştır. Model öngörülü moment kontrolü kolay anlaşılması, basit
uygulanması, çok değişkenli doğrusal olmayan sistemleri etkin bir şekilde ele
alabilmesi ve kısıtlamaların dahil edilebilmesi gibi üstünlüklerden dolayı
sürücü sistemlerinde geniş bir uygulama alanı bulmuştur. Son zamanlarda, bu kontrol
yönteminin hız-algılayıcısız gerçekleştirilmesi için literatürde yoğun
çalışmalar yürütülmektedir. Diğer taraftan, modele uyarlamalı sistemler basit
yapıları, kolay uygulanmaları ve düşük işlem gereksinimleri nedeniyle asenkron
motorların hız kestiriminde oldukça fazla kullanılmaktadır. Bu çalışmada, diğer
modele uyarlamalı sistem yaklaşımlarına kıyasla sunduğu üstünlüklerden dolayı
stator akım hatası temelli modele uyarlamalı sistem tercih edilmiş ve model
öngörülü moment kontrollü için gerekli akı ve hız kestirimi
gerçekleştirilmiştir. Son olarak, önerilen sürücü sistemi farklı çalışma
koşulları ve parametre değişimleri altında test edilmiştir.

References

  • [1] KARLOVSKY, P., LETTL J., “Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis,” Energies, 11 (7), 1793, 2018.
  • [2] ROJAS, C.A., RODRIGUEZ, J., VILLARROEL, F., ESPINOZA J.R., SILVA, C.A., TRINCADO, M., “Predictive Torque and Flux Control Without Weighting Factors,” IEEE Trans. Ind. Electron., 60 (2), 681–690, 2013.
  • [3] WANG, F., XIE, H., CHEN, Q., DAVARI, S.A., RODRIGUEZ, J., KENNEL, R., “Parallel Predictive Torque Control for Induction Machines without Weighting Factors,” IEEE Trans. Power Electron., 1–1, 2019.
  • [4] ZHANG, Y., YANG, H., “Two-Vector-Based Model Predictive Torque Control Without Weighting Factors for Induction Motor Drives,” IEEE Trans. Power Electron., 31 (2), 1381–1390, 2016.
  • [5] VARGAS, R., AMMANN, U., RODRIGUEZ, J., “Predictive Approach to Increase Efficiency and Reduce Switching Losses on Matrix Converters,” IEEE Trans. Power Electron., 24 (4), 894–902, 2009.
  • [6] ZHANG, Y., BAI, Y., YANG, H., ZHANG, B., “Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed IM Drives With Speed-Sensorless and Field-Weakening Operations,” IEEE Trans. Ind. Electron., 66 (6), 4262–4272, 2019.
  • [7] WANG, F., CHEN, Z., STOLZE, P., STUMPER, J.-F., RODRIGUEZ J., KENNEL, R., “Encoderless Finite-State Predictive Torque Control for Induction Machine With a Compensated MRAS,” IEEE Trans. Ind. Inform., 10 (2), 1097–1106, 2014.
  • [8] HABIBULLAH, MD. DAH-CHUAN LU, D., “Encoderless FS-PTC for induction motor with extended Kalman filter,” in 2014 Australasian Universities Power Engineering Conference (AUPEC), 1–5. Perth, Australia, 2014.
  • [9] YAN, L., DOU, M., ZHANG, H., HUA, Z., “Speed-Sensorless Dual Reference Frame Predictive Torque Control for Induction Machines,” IEEE Trans. Power Electron., 1–1, 2019.
  • [10] PAL, A., DAS, S., CHATTOPADHYAY, A. K., “An Improved Rotor Flux Space Vector Based MRAS for Field-Oriented Control of Induction Motor Drives,” IEEE Trans. Power Electron., 33 (6), 5131–5141, 2018.
  • [11] RASHED, M., STRONACH, A. F., “A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation,” Electr. Power Appl. IEE Proc. -, 151 (6), 685–693, 2004.
  • [12] TEJA, A.V.R., VERMA, V., CHAKRABORTY, C., “A New Formulation of Reactive-Power-Based Model Reference Adaptive System for Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron., 62 (11), 6797–6808, 2015.
  • [13] ORLOWSKA-KOWALSKA, T., DYBKOWSKI, M., “Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor Drive,” IEEE Trans. Ind. Electron., 57 (4), 1296–1308, 2010.
  • [14] DEHGHAN-AZAD, E., GADOUE, S., ATKINSON, D., SLATER, H., BARRASS, P., BLAABJERG, F., “Sensorless Control of IM Based on Stator-Voltage MRAS for Limp-Home EV Applications,” IEEE Trans. Power Electron., 33 (3), 1911–1921, 2018.
  • [15] RAVI TEJA, A. V., CHAKRABORTY, C., MAITI, S., HORI, Y., “A New Model Reference Adaptive Controller for Four Quadrant Vector Controlled Induction Motor Drives,” IEEE Trans. Ind. Electron., 59 (10), 3757–3767, 2012.
  • [16] DAS, S., KUMAR, R., PAL, A., “MRAS-Based Speed Estimation of Induction Motor Drive Utilizing Machines’ d- and q-Circuit Impedances,” IEEE Trans. Ind. Electron., 66 (6), 4286–4295, 2019.
Year 2020, Volume: 9 Issue: 1, 146 - 153, 30.01.2020
https://doi.org/10.28948/ngumuh.607378

Abstract

References

  • [1] KARLOVSKY, P., LETTL J., “Induction Motor Drive Direct Torque Control and Predictive Torque Control Comparison Based on Switching Pattern Analysis,” Energies, 11 (7), 1793, 2018.
  • [2] ROJAS, C.A., RODRIGUEZ, J., VILLARROEL, F., ESPINOZA J.R., SILVA, C.A., TRINCADO, M., “Predictive Torque and Flux Control Without Weighting Factors,” IEEE Trans. Ind. Electron., 60 (2), 681–690, 2013.
  • [3] WANG, F., XIE, H., CHEN, Q., DAVARI, S.A., RODRIGUEZ, J., KENNEL, R., “Parallel Predictive Torque Control for Induction Machines without Weighting Factors,” IEEE Trans. Power Electron., 1–1, 2019.
  • [4] ZHANG, Y., YANG, H., “Two-Vector-Based Model Predictive Torque Control Without Weighting Factors for Induction Motor Drives,” IEEE Trans. Power Electron., 31 (2), 1381–1390, 2016.
  • [5] VARGAS, R., AMMANN, U., RODRIGUEZ, J., “Predictive Approach to Increase Efficiency and Reduce Switching Losses on Matrix Converters,” IEEE Trans. Power Electron., 24 (4), 894–902, 2009.
  • [6] ZHANG, Y., BAI, Y., YANG, H., ZHANG, B., “Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed IM Drives With Speed-Sensorless and Field-Weakening Operations,” IEEE Trans. Ind. Electron., 66 (6), 4262–4272, 2019.
  • [7] WANG, F., CHEN, Z., STOLZE, P., STUMPER, J.-F., RODRIGUEZ J., KENNEL, R., “Encoderless Finite-State Predictive Torque Control for Induction Machine With a Compensated MRAS,” IEEE Trans. Ind. Inform., 10 (2), 1097–1106, 2014.
  • [8] HABIBULLAH, MD. DAH-CHUAN LU, D., “Encoderless FS-PTC for induction motor with extended Kalman filter,” in 2014 Australasian Universities Power Engineering Conference (AUPEC), 1–5. Perth, Australia, 2014.
  • [9] YAN, L., DOU, M., ZHANG, H., HUA, Z., “Speed-Sensorless Dual Reference Frame Predictive Torque Control for Induction Machines,” IEEE Trans. Power Electron., 1–1, 2019.
  • [10] PAL, A., DAS, S., CHATTOPADHYAY, A. K., “An Improved Rotor Flux Space Vector Based MRAS for Field-Oriented Control of Induction Motor Drives,” IEEE Trans. Power Electron., 33 (6), 5131–5141, 2018.
  • [11] RASHED, M., STRONACH, A. F., “A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation,” Electr. Power Appl. IEE Proc. -, 151 (6), 685–693, 2004.
  • [12] TEJA, A.V.R., VERMA, V., CHAKRABORTY, C., “A New Formulation of Reactive-Power-Based Model Reference Adaptive System for Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron., 62 (11), 6797–6808, 2015.
  • [13] ORLOWSKA-KOWALSKA, T., DYBKOWSKI, M., “Stator-Current-Based MRAS Estimator for a Wide Range Speed-Sensorless Induction-Motor Drive,” IEEE Trans. Ind. Electron., 57 (4), 1296–1308, 2010.
  • [14] DEHGHAN-AZAD, E., GADOUE, S., ATKINSON, D., SLATER, H., BARRASS, P., BLAABJERG, F., “Sensorless Control of IM Based on Stator-Voltage MRAS for Limp-Home EV Applications,” IEEE Trans. Power Electron., 33 (3), 1911–1921, 2018.
  • [15] RAVI TEJA, A. V., CHAKRABORTY, C., MAITI, S., HORI, Y., “A New Model Reference Adaptive Controller for Four Quadrant Vector Controlled Induction Motor Drives,” IEEE Trans. Ind. Electron., 59 (10), 3757–3767, 2012.
  • [16] DAS, S., KUMAR, R., PAL, A., “MRAS-Based Speed Estimation of Induction Motor Drive Utilizing Machines’ d- and q-Circuit Impedances,” IEEE Trans. Ind. Electron., 66 (6), 4286–4295, 2019.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Emrah Zerdali 0000-0003-1755-0327

Publication Date January 30, 2020
Submission Date August 20, 2019
Acceptance Date October 17, 2019
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Zerdali, E. (2020). MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 146-153. https://doi.org/10.28948/ngumuh.607378
AMA Zerdali E. MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI. NOHU J. Eng. Sci. January 2020;9(1):146-153. doi:10.28948/ngumuh.607378
Chicago Zerdali, Emrah. “MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 1 (January 2020): 146-53. https://doi.org/10.28948/ngumuh.607378.
EndNote Zerdali E (January 1, 2020) MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 146–153.
IEEE E. Zerdali, “MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI”, NOHU J. Eng. Sci., vol. 9, no. 1, pp. 146–153, 2020, doi: 10.28948/ngumuh.607378.
ISNAD Zerdali, Emrah. “MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (January 2020), 146-153. https://doi.org/10.28948/ngumuh.607378.
JAMA Zerdali E. MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI. NOHU J. Eng. Sci. 2020;9:146–153.
MLA Zerdali, Emrah. “MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 1, 2020, pp. 146-53, doi:10.28948/ngumuh.607378.
Vancouver Zerdali E. MODELE UYARLAMALI SİSTEM TEMELLİ MODEL ÖNGÖRÜLÜ MOMENT KONTROLLÜ SÜRÜCÜ SİSTEMİNİN TASARIMI. NOHU J. Eng. Sci. 2020;9(1):146-53.

23135