Research Article
BibTex RIS Cite

AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ

Year 2020, Volume: 9 Issue: 1, 437 - 450, 30.01.2020
https://doi.org/10.28948/ngumuh.681208

Abstract

İçme suyu ile kullanma suyunun temini, akarsulardaki kirlilik seviyesi ve baraj, bağlama gibi su yapılarının projelendirilmesi gibi çalışmalarda sediment miktarının tahmini çok önemlidir. Bu çalışmada, Fırat Havzası üzerindeki Göynük Çayı, Murat Nehri ve Peri Suyu gibi nehirler sediment taşınımı konusunda irdelenmiştir. Bölgedeki istasyonlar için yapay sinir ağları (YSA) ve uyarlamalı ağ tabanlı bulanık çıkarım sistemi (ANFIS) gibi yöntemler denenmiştir. Bu üç istasyona ait uygulamalarda debi(Q), sediment(Qs), sıcaklık(T) ve yağış(P) verilerinden faydalanılmıştır. Bu veriler ile üç istasyon için sediment tahmin modelleri oluşturulmuştur. Oluşturulan bu modeller hem eğitim hem de test aşamalarında regresyon katsayısı (R2) ve ortalama yüzde hatası (OYH) bakımından karşılaştırılmıştır. Regresyon katsayısı bakımından eğitim ve test aşamalarında en başarılı sonuç yapay sinir ağlarından elde edilmiştir. Ortalama yüzde hatası bakımından ise YSA ve ANFIS yöntemlerinden hem eğitim hem de test aşamalarında birbirlerine yakın sonuçlar elde edilmiştir.

References

  • [1] M. Buyukyıldız, S. Kumcu, “An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network Models”, Water Resources Management, vol. 31, no. 4, pp:1343-1359, 2017.
  • [2] J. Jang, “Anfıs: Adaptive-Network-Based Fuzzy Inference System”, IEEE Transactions on Systems, Man, and Cybernetics, 1993.
  • [3] S. Ghavidel, M. Montaseri, “Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin”, Stochastic environmental research and risk assessment, vol. 28 no. 8, pp: 2101-2118, 2014.
  • [4] O. Sivrikaya, T. Soycan, “Estimation of compaction parameters of fine‐grained soils in terms of compaction energy using artificial neural networks” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 35 no. 17, pp: 1830-1841, 2011.
  • [5] H. Erdem, “Predicting the moment capacity of RC beams exposed to fire using ANNs”, Construction and Building Materials, vol. 101, pp: 30-38, 2015.
  • [6] K. Saplıoğlu, M. Çimen, “Yapay Sinir Ağlarını Kullanarak Günlük Yağış Miktarının Tahmini”, Mühendislik Bilimleri ve Tasarım Dergisi, vol. 1, no.1,pp: 14-21, 2010.
  • [7] I. Ebtehaj, H. Bonakdari, “Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport”, Applied Water Science, vol. 7, no. 8, pp: 4287-4299, 2017.
  • [8] A. Partovian, V. Nourani, M. Alami, “Hybrid denoising-jittering data processing approach to enhance sediment load prediction of muddy rivers”, Journal of Mountain Science, vol. 13 no. 12, pp 2135-2146, 2016.
  • [9] V. Kitsikoudis, E. Sidiropoulos, V. Hrissanthou, “Assessment of sediment transport approaches for sand-bed rivers by means of machine learning”, Hydrological sciences journal, vol. 60 no. 9, pp: 1566-1586, 2015.
  • [10] Y. Çatal, K. Saplioglu. "Comparison of adaptive neuro-fuzzy inference system, artificial neural networks and non-linear regression for bark volume estimation in brutian pine (Pinus brutia Ten.)." Applied ecology and environmental research vol.16, no.2, pp: 2015-2027,2018.
  • [11] K.Saplioglu, T. S. Kucukerdem. " Estimation of missing streamflow data using ANFIS models and determination of the number of datasets for ANFIS: the case of Yeşilırmak River." Applied ecology and environmental research vol.16, no.3, pp: 3583-3594,2018.
  • [12] T. Gunawan, M. Kusuma, M. Cahyono, J. Nugroho, “The application of backpropagation neural network method to estimate the sediment loads”, In MATEC Web of Conferences, vol. 101, pp: 5-16, 2017.
  • [13] G. Tayfur, V. Guldal, “Artificial neural networks for estimating daily total suspended sediment in natural streams”, Hydrology Research, vol. 37, no. 1, pp: 69-79, 2006.
  • [14] S. Wieprecht, H. Tolossa, C. Yang, “A neuro-fuzzy-based modelling approach for sediment transport computation”, Hydrological sciences journal, vol. 58 no. 3, pp. 587-599, 2013.
  • [15] S. Seyedian, H. Rouhani, “Assessing ANFIS accuracy in estimation of suspended sediments”, Građevinar, vol. 67 no. 12, pp: 1165-1176, 2016.
  • [16] S. Mcculloch, H. Pitts, “A Logical Calculus of the Ideas Immanent in Neural Net”, Bulletin of Mathematical Biophysics, vol. 5, no. 4 pp:115-133, 1943.
  • [17] B. Widrow, M. Hoff, “Adaptive switching circuits”, 1960 IRE WESCON Convention Record, 4, 96-104. , Newyork, 1960.
  • [18] Z. Şen, “Principles of Artificial Neural Networks”, Turkish Water Foundation Publication, in Turkish, 2004.
  • [19] Ö. Başkan, “İzole Sinyalize Kavşaklardaki Ortalama Taşıt Gecikmelerinin Yapay Sinir Ağları İle Modellenmesi”, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 2004.
  • [20] V. Kitsikoudis, E. Sidiropoulos, V. Hrissanthou, “Assessment of sediment transport approaches for sand-bed rivers by means of machine learning”, Hydrological sciences journal, vol. 60, no. 9, pp: 1566-1586, 2015.
  • [21] E. Mamdani, S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-Machine Studies, vol. 7, no. 1, pp:1-13, 1975.
  • [22] Y. Tsukamoto, “An approach to fuzzy reasoning method, In:M.M. Gupta, R.K. Ragade, and R. Yager, eds. Advances in fuzzy set theory and applications”, Amsterdam: Elsevier Science Ltd., 1979.
  • [23] J. S. Jang Sun “Functional equivalence between radial basis function networks and fuzzy inference systems”, IEEE Transactions on Neural Networks, vol. 4, no. 1, pp: 156-159, 1993.
Year 2020, Volume: 9 Issue: 1, 437 - 450, 30.01.2020
https://doi.org/10.28948/ngumuh.681208

Abstract

References

  • [1] M. Buyukyıldız, S. Kumcu, “An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network Models”, Water Resources Management, vol. 31, no. 4, pp:1343-1359, 2017.
  • [2] J. Jang, “Anfıs: Adaptive-Network-Based Fuzzy Inference System”, IEEE Transactions on Systems, Man, and Cybernetics, 1993.
  • [3] S. Ghavidel, M. Montaseri, “Application of different data-driven methods for the prediction of total dissolved solids in the Zarinehroud basin”, Stochastic environmental research and risk assessment, vol. 28 no. 8, pp: 2101-2118, 2014.
  • [4] O. Sivrikaya, T. Soycan, “Estimation of compaction parameters of fine‐grained soils in terms of compaction energy using artificial neural networks” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 35 no. 17, pp: 1830-1841, 2011.
  • [5] H. Erdem, “Predicting the moment capacity of RC beams exposed to fire using ANNs”, Construction and Building Materials, vol. 101, pp: 30-38, 2015.
  • [6] K. Saplıoğlu, M. Çimen, “Yapay Sinir Ağlarını Kullanarak Günlük Yağış Miktarının Tahmini”, Mühendislik Bilimleri ve Tasarım Dergisi, vol. 1, no.1,pp: 14-21, 2010.
  • [7] I. Ebtehaj, H. Bonakdari, “Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport”, Applied Water Science, vol. 7, no. 8, pp: 4287-4299, 2017.
  • [8] A. Partovian, V. Nourani, M. Alami, “Hybrid denoising-jittering data processing approach to enhance sediment load prediction of muddy rivers”, Journal of Mountain Science, vol. 13 no. 12, pp 2135-2146, 2016.
  • [9] V. Kitsikoudis, E. Sidiropoulos, V. Hrissanthou, “Assessment of sediment transport approaches for sand-bed rivers by means of machine learning”, Hydrological sciences journal, vol. 60 no. 9, pp: 1566-1586, 2015.
  • [10] Y. Çatal, K. Saplioglu. "Comparison of adaptive neuro-fuzzy inference system, artificial neural networks and non-linear regression for bark volume estimation in brutian pine (Pinus brutia Ten.)." Applied ecology and environmental research vol.16, no.2, pp: 2015-2027,2018.
  • [11] K.Saplioglu, T. S. Kucukerdem. " Estimation of missing streamflow data using ANFIS models and determination of the number of datasets for ANFIS: the case of Yeşilırmak River." Applied ecology and environmental research vol.16, no.3, pp: 3583-3594,2018.
  • [12] T. Gunawan, M. Kusuma, M. Cahyono, J. Nugroho, “The application of backpropagation neural network method to estimate the sediment loads”, In MATEC Web of Conferences, vol. 101, pp: 5-16, 2017.
  • [13] G. Tayfur, V. Guldal, “Artificial neural networks for estimating daily total suspended sediment in natural streams”, Hydrology Research, vol. 37, no. 1, pp: 69-79, 2006.
  • [14] S. Wieprecht, H. Tolossa, C. Yang, “A neuro-fuzzy-based modelling approach for sediment transport computation”, Hydrological sciences journal, vol. 58 no. 3, pp. 587-599, 2013.
  • [15] S. Seyedian, H. Rouhani, “Assessing ANFIS accuracy in estimation of suspended sediments”, Građevinar, vol. 67 no. 12, pp: 1165-1176, 2016.
  • [16] S. Mcculloch, H. Pitts, “A Logical Calculus of the Ideas Immanent in Neural Net”, Bulletin of Mathematical Biophysics, vol. 5, no. 4 pp:115-133, 1943.
  • [17] B. Widrow, M. Hoff, “Adaptive switching circuits”, 1960 IRE WESCON Convention Record, 4, 96-104. , Newyork, 1960.
  • [18] Z. Şen, “Principles of Artificial Neural Networks”, Turkish Water Foundation Publication, in Turkish, 2004.
  • [19] Ö. Başkan, “İzole Sinyalize Kavşaklardaki Ortalama Taşıt Gecikmelerinin Yapay Sinir Ağları İle Modellenmesi”, Yüksek Lisans Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, Denizli, 2004.
  • [20] V. Kitsikoudis, E. Sidiropoulos, V. Hrissanthou, “Assessment of sediment transport approaches for sand-bed rivers by means of machine learning”, Hydrological sciences journal, vol. 60, no. 9, pp: 1566-1586, 2015.
  • [21] E. Mamdani, S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-Machine Studies, vol. 7, no. 1, pp:1-13, 1975.
  • [22] Y. Tsukamoto, “An approach to fuzzy reasoning method, In:M.M. Gupta, R.K. Ragade, and R. Yager, eds. Advances in fuzzy set theory and applications”, Amsterdam: Elsevier Science Ltd., 1979.
  • [23] J. S. Jang Sun “Functional equivalence between radial basis function networks and fuzzy inference systems”, IEEE Transactions on Neural Networks, vol. 4, no. 1, pp: 156-159, 1993.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Ramazan Acar

Kemal Saplıoğlu This is me

Publication Date January 30, 2020
Submission Date December 7, 2018
Acceptance Date March 25, 2019
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Acar, R., & Saplıoğlu, K. (2020). AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 437-450. https://doi.org/10.28948/ngumuh.681208
AMA Acar R, Saplıoğlu K. AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ. NOHU J. Eng. Sci. January 2020;9(1):437-450. doi:10.28948/ngumuh.681208
Chicago Acar, Ramazan, and Kemal Saplıoğlu. “AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 1 (January 2020): 437-50. https://doi.org/10.28948/ngumuh.681208.
EndNote Acar R, Saplıoğlu K (January 1, 2020) AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 1 437–450.
IEEE R. Acar and K. Saplıoğlu, “AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ”, NOHU J. Eng. Sci., vol. 9, no. 1, pp. 437–450, 2020, doi: 10.28948/ngumuh.681208.
ISNAD Acar, Ramazan - Saplıoğlu, Kemal. “AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/1 (January 2020), 437-450. https://doi.org/10.28948/ngumuh.681208.
JAMA Acar R, Saplıoğlu K. AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ. NOHU J. Eng. Sci. 2020;9:437–450.
MLA Acar, Ramazan and Kemal Saplıoğlu. “AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 1, 2020, pp. 437-50, doi:10.28948/ngumuh.681208.
Vancouver Acar R, Saplıoğlu K. AKARSULARDAKİ SEDİMENT TAŞINIMININ YAPAY SİNİR AĞLARI VE ANFIS YÖNTEMLERİ KULLANILARAK TESPİTİ. NOHU J. Eng. Sci. 2020;9(1):437-50.

download