Research Article
BibTex RIS Cite

KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ

Year 2020, Volume: 9 Issue: 2, 1001 - 1016, 07.08.2020
https://doi.org/10.28948/ngumuh.692840

Abstract

Bu çalışmanın amacı, kiraz çekirdeklerinin ısıl bozulma davranışını ve kinetiğini incelemektir. Bu nedenle, iki farklı partikül boyutundaki (75-150 ve 150-250 µm) kiraz çekirdekleri beş farklı ısıtma hızında (5, 10, 20, 30 ve 40°C/dk) azot gazı varlığında oda sıcaklığından 800°C'ye kadar izotermal olmayan termogravimetrik analize tabi tutulmuştur. Çalışmalar, piroliz bölgesinde temel olarak nem ve düşük molekül ağırlığında uçucuların uzaklaştırılmasına (1. basamak), hemiselülozun (2. basamak), selülozun (3. basamak) ve ligninin (4. basamak) ısıl bozunmalarına karşılık gelen dört farklı basamağın varlığını ortaya koymuştur. Aktif piroliz basamaklarının (2. ve 3. basamakların) kinetik parametreleri Coats-Redfern ve Kissinger-Akahira-Sunose yöntemleri ile hesaplanmıştır. Coats-Redfern yöntemi daha yüksek değerler vermesine rağmen, her iki yöntemle hesaplanan tüm aktivasyon enerjisi değerlerinin birbirleriyle uyumlu oldukları gözlenmiştir. Ayrıca, artan partikül boyutu ile aktivasyon enerjisi değerlerinde artış gerçekleştiği belirlenmiştir.

Supporting Institution

Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2018/AP/0017

Thanks

Bu çalışma, Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2018/AP/0017 numaralı proje kapsamında desteklenmiştir.

References

  • V. Dhyani and T. Bhaskar, “A Comprehensive review on the pyrolysis of lignocellulosic biomass”, Renewable Energy, 129, 695-716, 2018.
  • R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review”, Journal of Analytical and Applied Pyrolysis, 129, 134-149, 2018.
  • A. A. Lappas, E. F. Iliopoulou, K. Kalogiannis and S. Stefanidis, “Conversion of biomass to fuels and chemicals via thermochemical processes” in Biorefinery: From Biomass to Chemicals and Fuels, M. Aresta, A. Dibenedetto and F. Dumeignil, Eds. Germany: De Gruyter, 2012, pp 333-361.
  • S. Wang, G. Dai, H. Yang and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review”, Progress in Energy and Combustion Science, 62, 33-86, 2017.
  • A. Sriram and G. Swaminathan, “Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies”, Bioresource Technology, 265, 236-246, 2018.
  • Th. Damartzis, D. Vamvuka, S. Sfakiotakis and A. Zabaniotou, “Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)”, Bioresource Technology, 102, 6230-6238, 2011.
  • G. Özsin and A. E. Pütün, “TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process”, Energy Conversion and Management, 182, 143-153, 2019.
  • M. A. Sokoto, R. Singh, B. B. Krishna, J. Kumar and T. Bhaskar, “Non-isothermal kinetic study of de-oiled seed cake of African star apple (Chrosophyllum albidum) using thermogravimetry”, Heliyon, 2, e00172, 2016.
  • E. Amini, M. S. Safdari, D. R. Weise and T. H. Fletcher, “Pyrolysis kinetics of live and dead wildland vegetation from the Southern United States”, Journal of Analytical and Applied Pyrolysis, 142, 104613, 2019.
  • A. A. Wani, P. Singh, K. Gul, M. H. Wani and H. C. Langowski, “Sweet cherry (Prunus avium): critical factors affecting the composition and Shell life”, Food Packaging and Shelf life, 1, 86-99, 2014.
  • FAO, Food and Agriculture Organization of United Nations, FAOSTAT, Crops, Cherries. [Online] Available: http://www.fao.org/faostat/en/#data/QC [Accessed: Jan, 12, 2020]
  • M. Dolżyńska, S. Obidziński, M. Kowczyk-Sadowy and M. Krasowska, “Densification and combustion of cherry Stones”, Energies, 12, 3042, 2019.
  • A. E. Gürel, Ü. Ağbulut, A. Ergün and İ. Ceylan, “Environmental and economic assessment of a low energy consumption household refrigerator”, Engineering Science and Technology, and International Journal, article in press.
  • R. Pietrzak, P. Nowicki, J. Kaźmierczak, I. Kuszyńska, J. Goscianska and J. Przepiórski, “Comparison of the effects of different chemical activation methods on properties of carbonaceous adsorbents obtained from cherry Stones”, Chemical Engineering Research and Design, 92, 1187-1191, 2014.
  • M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, “Preparation of activated carbon from cherry stones by chemical activation with ZnCl2”, Applied Surface Science, 252, 5967-5971, 2006.
  • F. Oğuz Erdoğan, “Düşük maliyetli adsorbentler üzerine dispers sarı 211 tekstil boyasının adsorpsiyonu”, AKU J. Sci. Eng., 17, 889-898, 2017.
  • Ö. Gerçel and G. Seydioğlu, “Kiraz çekirdeğinden granül aktif karbon üretimi”, Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 16(2), 189-193, 2015.
  • M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, “Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid”, Energy & Fuels, 21(5), 2942-2949, 2007.
  • P. Nowicki, J. Kazmierczak and R. Pietrzak, “Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry Stones”, Powder Technology, 269, 312-319, 2015.
  • M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, “Preparation of activated carbon from cherry stones by physical activation in air. Influence of the chemical carbonisation with H2SO4”, Journal of Analytical and Applied Pyrolysis, 94, 131-137, 2012.
  • H. Tutar Kahraman and E. Pehlivan, “Cr6+ removal using oleaster (Elaeagnus) seed and cherry (Prunus avium) stone biochar”, Powder Technology, 306, 61-67, 2017.
  • N. Álvarez-Gutiérrez, M. V. Gil, F. Rubiera and C. Pevida, “Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations”, Chemical Engineering Journal, 307, 249-257, 2017.
  • C. J. Durán-Valle, M. Gómez-Corzo, J. Pastor-Villegas and V. Gómez-Serrano, “Study of cherry stones as raw material in preparation of carbonaceous adsorbents”, Journal of Analytical and Applied Pyrolysis, 73, 59-67, 2005.
  • A. Venegas-Gómez, M. Gómez-Corzo, A. Macías-García and J. P. Carrasco-Amador, “Charcoal obtained from cherry stones in different carbonization atmospheres”, Journal of Environmental Chemical Engineering, article in press.
  • C. J. Durán-Valle, M. Gómez-Corzo, V. Gómez-Serrano, J. Pastor-Villegas and M. L. Rojas-Cervantes, “Preparation of carcoal from cherry Stones”, Applied Surface Science, 252, 5957-5960, 2006.
  • J. Molenda, M. Swat and E. Osuch-Slomka, “Effect of thermal conditions of pyrolysis process on the quality of biochar obtained from vegetable waste”, Inżynieria i Ochrona Środowiska, 21(3), 289-302, 2018.
  • G. Duman, C. Okutucu, S. Ucar, R. Stahl and J. Yanik, “The slow and fast pyrolysis of cherry seed”, Bioresource Technology, 102, 1869-1878, 2011.
  • P. Yangali, A. M. Celaya and J. L. Goldfarb, “Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends”, Journal of Analytical and Applied Pyrolysis”, 108, 203-211, 2014.
  • J. F. González, J. M. Encinar, J. L. Canito, E. Sabio and M. Chacón, “Pyrolysis of cherry Stones: energy uses of the different fractions and kinetic study”, Journal of Analytical and Applied Pyrolysis, 67, 165-190, 2003.
  • G. Özsin and A. E. Pütün, “Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR”, Waste Management, 64, 315-326, 2017.
  • L. M. Alvarenga, T. P. Xavier, M. A. S. Barrozo, M. S. Bacelos and T. S. Lira, “Analysis of reaction kinetics of carton packaging pyrolysis”, Procedia Engineering, 42, 113-122, 2012.
  • P. Bartocci, M. D. Amico, N. Moriconi, G. Bidini and F. Fantozzi, “Pyrolysis of olive stone for energy purposes”, Energy Procedia, 82, 374-380, 2015.
  • N. Voća, N. Bilandžija, V. Jurišic, A. Matin, T. Krićka and I. Sedak, “Proximate, ultimate and energy value analysis of plum biomass by-products case study: Crotia’s potential”, J. Agr. Sci. Tech., 18, 1655-1666, 2016.
  • H. F. Gerçel, G. Çayır and Ö. Gerçel, “Energy applications of biomass: pyrolysis of apricot stone”, Energy Sources Part A, 28, 611-618, 2006.
  • T. Uysal, G. Duman, Y. Onal, I. Yasa and J. Yanik, “Production of activated carbon and fungicidal oil from peach stone by two-stage process”, Journal of Analytical and Applied Pyrolysis, 108, 47-55, 2014.
  • J. M. Faleeva, V. A. Sinelschhikov, G. A. Sytchev and V. M. Zaichenko, “Exothermic effect during torrefaction”, J. Phys.: Conf. Ser., 946, 012033, 2018.
  • H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis”, Fuel, 86, 1781-1788, 2007.
  • X. Zhang, M. Xu, R. Sun and L. Sun, “Study on biomass pyrolysis kinetics”, Journal of Engineering for Gas turbines and Power, 128, 493-496, 2006.
  • J. Zhang, B. Huang, L. Chen, J. Du, W. Li and Z. Luo, “Pyrolysis kinetics of hulless barley straw using the distributed activation energy model (DAEM) by the TG/DTA technique and SEM/XRD characterizations for hulless barley straw derived biochar”, Brazilian Journal of Chemical Engineering, 35(3), 1039-1050, 2018.
  • M. R. Baray Guerrero, M. Marques da Silva Paula, M. Meléndez Zaragoza, J. Salinas Gutiérrez, V. Guzmán Velderrain, A. López Ortiz and V. Collins-Martínez, “Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass”, International Journal of Hydrogen Energy, 39, 16619-16627, 2014.
  • H. Niu and N. Liu, “Effect of particle size on pyrolysis kinetics of forest fuels in nitrogen”, Fire safety Sceince-Proceedings of the Eleventh International Symposium, 2014, pp 1393-1405.
  • D. V. Suriapparao and R. Vinu, “Effect of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution”, Waste Biomass Valor, 9, 465-477, 2018.
  • K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, J. Therm. Anal. Calorim., 109, 227-235, 2012.
Year 2020, Volume: 9 Issue: 2, 1001 - 1016, 07.08.2020
https://doi.org/10.28948/ngumuh.692840

Abstract

Project Number

2018/AP/0017

References

  • V. Dhyani and T. Bhaskar, “A Comprehensive review on the pyrolysis of lignocellulosic biomass”, Renewable Energy, 129, 695-716, 2018.
  • R. E. Guedes, A. S. Luna, and A. R. Torres, “Operating parameters for bio-oil production in biomass pyrolysis: A review”, Journal of Analytical and Applied Pyrolysis, 129, 134-149, 2018.
  • A. A. Lappas, E. F. Iliopoulou, K. Kalogiannis and S. Stefanidis, “Conversion of biomass to fuels and chemicals via thermochemical processes” in Biorefinery: From Biomass to Chemicals and Fuels, M. Aresta, A. Dibenedetto and F. Dumeignil, Eds. Germany: De Gruyter, 2012, pp 333-361.
  • S. Wang, G. Dai, H. Yang and Z. Luo, “Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review”, Progress in Energy and Combustion Science, 62, 33-86, 2017.
  • A. Sriram and G. Swaminathan, “Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies”, Bioresource Technology, 265, 236-246, 2018.
  • Th. Damartzis, D. Vamvuka, S. Sfakiotakis and A. Zabaniotou, “Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)”, Bioresource Technology, 102, 6230-6238, 2011.
  • G. Özsin and A. E. Pütün, “TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process”, Energy Conversion and Management, 182, 143-153, 2019.
  • M. A. Sokoto, R. Singh, B. B. Krishna, J. Kumar and T. Bhaskar, “Non-isothermal kinetic study of de-oiled seed cake of African star apple (Chrosophyllum albidum) using thermogravimetry”, Heliyon, 2, e00172, 2016.
  • E. Amini, M. S. Safdari, D. R. Weise and T. H. Fletcher, “Pyrolysis kinetics of live and dead wildland vegetation from the Southern United States”, Journal of Analytical and Applied Pyrolysis, 142, 104613, 2019.
  • A. A. Wani, P. Singh, K. Gul, M. H. Wani and H. C. Langowski, “Sweet cherry (Prunus avium): critical factors affecting the composition and Shell life”, Food Packaging and Shelf life, 1, 86-99, 2014.
  • FAO, Food and Agriculture Organization of United Nations, FAOSTAT, Crops, Cherries. [Online] Available: http://www.fao.org/faostat/en/#data/QC [Accessed: Jan, 12, 2020]
  • M. Dolżyńska, S. Obidziński, M. Kowczyk-Sadowy and M. Krasowska, “Densification and combustion of cherry Stones”, Energies, 12, 3042, 2019.
  • A. E. Gürel, Ü. Ağbulut, A. Ergün and İ. Ceylan, “Environmental and economic assessment of a low energy consumption household refrigerator”, Engineering Science and Technology, and International Journal, article in press.
  • R. Pietrzak, P. Nowicki, J. Kaźmierczak, I. Kuszyńska, J. Goscianska and J. Przepiórski, “Comparison of the effects of different chemical activation methods on properties of carbonaceous adsorbents obtained from cherry Stones”, Chemical Engineering Research and Design, 92, 1187-1191, 2014.
  • M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, “Preparation of activated carbon from cherry stones by chemical activation with ZnCl2”, Applied Surface Science, 252, 5967-5971, 2006.
  • F. Oğuz Erdoğan, “Düşük maliyetli adsorbentler üzerine dispers sarı 211 tekstil boyasının adsorpsiyonu”, AKU J. Sci. Eng., 17, 889-898, 2017.
  • Ö. Gerçel and G. Seydioğlu, “Kiraz çekirdeğinden granül aktif karbon üretimi”, Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 16(2), 189-193, 2015.
  • M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, “Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid”, Energy & Fuels, 21(5), 2942-2949, 2007.
  • P. Nowicki, J. Kazmierczak and R. Pietrzak, “Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry Stones”, Powder Technology, 269, 312-319, 2015.
  • M. Olivares-Marín, C. Fernández-González, A. Macías-García and V. Gómez-Serrano, “Preparation of activated carbon from cherry stones by physical activation in air. Influence of the chemical carbonisation with H2SO4”, Journal of Analytical and Applied Pyrolysis, 94, 131-137, 2012.
  • H. Tutar Kahraman and E. Pehlivan, “Cr6+ removal using oleaster (Elaeagnus) seed and cherry (Prunus avium) stone biochar”, Powder Technology, 306, 61-67, 2017.
  • N. Álvarez-Gutiérrez, M. V. Gil, F. Rubiera and C. Pevida, “Kinetics of CO2 adsorption on cherry stone-based carbons in CO2/CH4 separations”, Chemical Engineering Journal, 307, 249-257, 2017.
  • C. J. Durán-Valle, M. Gómez-Corzo, J. Pastor-Villegas and V. Gómez-Serrano, “Study of cherry stones as raw material in preparation of carbonaceous adsorbents”, Journal of Analytical and Applied Pyrolysis, 73, 59-67, 2005.
  • A. Venegas-Gómez, M. Gómez-Corzo, A. Macías-García and J. P. Carrasco-Amador, “Charcoal obtained from cherry stones in different carbonization atmospheres”, Journal of Environmental Chemical Engineering, article in press.
  • C. J. Durán-Valle, M. Gómez-Corzo, V. Gómez-Serrano, J. Pastor-Villegas and M. L. Rojas-Cervantes, “Preparation of carcoal from cherry Stones”, Applied Surface Science, 252, 5957-5960, 2006.
  • J. Molenda, M. Swat and E. Osuch-Slomka, “Effect of thermal conditions of pyrolysis process on the quality of biochar obtained from vegetable waste”, Inżynieria i Ochrona Środowiska, 21(3), 289-302, 2018.
  • G. Duman, C. Okutucu, S. Ucar, R. Stahl and J. Yanik, “The slow and fast pyrolysis of cherry seed”, Bioresource Technology, 102, 1869-1878, 2011.
  • P. Yangali, A. M. Celaya and J. L. Goldfarb, “Co-pyrolysis reaction rates and activation energies of West Virginia coal and cherry pit blends”, Journal of Analytical and Applied Pyrolysis”, 108, 203-211, 2014.
  • J. F. González, J. M. Encinar, J. L. Canito, E. Sabio and M. Chacón, “Pyrolysis of cherry Stones: energy uses of the different fractions and kinetic study”, Journal of Analytical and Applied Pyrolysis, 67, 165-190, 2003.
  • G. Özsin and A. E. Pütün, “Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR”, Waste Management, 64, 315-326, 2017.
  • L. M. Alvarenga, T. P. Xavier, M. A. S. Barrozo, M. S. Bacelos and T. S. Lira, “Analysis of reaction kinetics of carton packaging pyrolysis”, Procedia Engineering, 42, 113-122, 2012.
  • P. Bartocci, M. D. Amico, N. Moriconi, G. Bidini and F. Fantozzi, “Pyrolysis of olive stone for energy purposes”, Energy Procedia, 82, 374-380, 2015.
  • N. Voća, N. Bilandžija, V. Jurišic, A. Matin, T. Krićka and I. Sedak, “Proximate, ultimate and energy value analysis of plum biomass by-products case study: Crotia’s potential”, J. Agr. Sci. Tech., 18, 1655-1666, 2016.
  • H. F. Gerçel, G. Çayır and Ö. Gerçel, “Energy applications of biomass: pyrolysis of apricot stone”, Energy Sources Part A, 28, 611-618, 2006.
  • T. Uysal, G. Duman, Y. Onal, I. Yasa and J. Yanik, “Production of activated carbon and fungicidal oil from peach stone by two-stage process”, Journal of Analytical and Applied Pyrolysis, 108, 47-55, 2014.
  • J. M. Faleeva, V. A. Sinelschhikov, G. A. Sytchev and V. M. Zaichenko, “Exothermic effect during torrefaction”, J. Phys.: Conf. Ser., 946, 012033, 2018.
  • H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis”, Fuel, 86, 1781-1788, 2007.
  • X. Zhang, M. Xu, R. Sun and L. Sun, “Study on biomass pyrolysis kinetics”, Journal of Engineering for Gas turbines and Power, 128, 493-496, 2006.
  • J. Zhang, B. Huang, L. Chen, J. Du, W. Li and Z. Luo, “Pyrolysis kinetics of hulless barley straw using the distributed activation energy model (DAEM) by the TG/DTA technique and SEM/XRD characterizations for hulless barley straw derived biochar”, Brazilian Journal of Chemical Engineering, 35(3), 1039-1050, 2018.
  • M. R. Baray Guerrero, M. Marques da Silva Paula, M. Meléndez Zaragoza, J. Salinas Gutiérrez, V. Guzmán Velderrain, A. López Ortiz and V. Collins-Martínez, “Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass”, International Journal of Hydrogen Energy, 39, 16619-16627, 2014.
  • H. Niu and N. Liu, “Effect of particle size on pyrolysis kinetics of forest fuels in nitrogen”, Fire safety Sceince-Proceedings of the Eleventh International Symposium, 2014, pp 1393-1405.
  • D. V. Suriapparao and R. Vinu, “Effect of biomass particle size on slow pyrolysis kinetics and fast pyrolysis product distribution”, Waste Biomass Valor, 9, 465-477, 2018.
  • K. Açıkalın, “Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis”, J. Therm. Anal. Calorim., 109, 227-235, 2012.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Chemical Engineering
Authors

Gözde Gözke 0000-0003-4576-8761

Korkut Açıkalın This is me 0000-0002-2698-5595

Project Number 2018/AP/0017
Publication Date August 7, 2020
Submission Date February 22, 2020
Acceptance Date July 17, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Gözke, G., & Açıkalın, K. (2020). KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1001-1016. https://doi.org/10.28948/ngumuh.692840
AMA Gözke G, Açıkalın K. KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ. NOHU J. Eng. Sci. August 2020;9(2):1001-1016. doi:10.28948/ngumuh.692840
Chicago Gözke, Gözde, and Korkut Açıkalın. “KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 2 (August 2020): 1001-16. https://doi.org/10.28948/ngumuh.692840.
EndNote Gözke G, Açıkalın K (August 1, 2020) KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 1001–1016.
IEEE G. Gözke and K. Açıkalın, “KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ”, NOHU J. Eng. Sci., vol. 9, no. 2, pp. 1001–1016, 2020, doi: 10.28948/ngumuh.692840.
ISNAD Gözke, Gözde - Açıkalın, Korkut. “KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (August 2020), 1001-1016. https://doi.org/10.28948/ngumuh.692840.
JAMA Gözke G, Açıkalın K. KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ. NOHU J. Eng. Sci. 2020;9:1001–1016.
MLA Gözke, Gözde and Korkut Açıkalın. “KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 2, 2020, pp. 1001-16, doi:10.28948/ngumuh.692840.
Vancouver Gözke G, Açıkalın K. KİRAZ ÇEKİRDEĞİ PİROLİZ KİNETİĞİNİN MODEL İÇERMEYEN VE MODEL BAZLI İNTEGRAL KİNETİK YÖNTEMLER KULLANILARAK İZOTERMAL OLMAYAN TERMOGRAVİMETRİK ANALİZ VERİLERİ ÜZERİNDEN İNCELENMESİ. NOHU J. Eng. Sci. 2020;9(2):1001-16.

download