Research Article
BibTex RIS Cite

REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ

Year 2020, Volume: 9 Issue: 2, 1039 - 1053, 07.08.2020
https://doi.org/10.28948/ngumuh.693562

Abstract

Bu çalışma kapsamında refrakter olmayan sülfürlü altın-gümüş cevherinin zenginleştirilmesinde çevreye daha dost proseslerden olan flotasyon yönteminin uygulanabilirliği araştırılmıştır. Çanakkale-Serçeler bölgesinden temin edilen 18,85 ppm Au ve 120 ppm Ag içeren numune üzerinde gerçekleştirilen flotasyon çalışmalarına göre, -74 µm tane boyutunda, kaba devrede 1000+1000 g/t Aerophine 3418 A+Aero 208 kullanımı ve 2 kademeli temizleme devresi ile konsantrede %75,8 verim ile 625 ppm Au, %86,5 verim ile 4833 ppm Ag elde edilmiştir. Kaba devrede 1500+1500 g/t Aerophine 3418 A+Aero 208 kullanımı ve 3 kademeli temizleme devresi ile ise konsantrede %69,6 verim ile 1026,5 ppm Au, %80,6 verim ile 8058,1 ppm Ag elde edilmiştir. Bu sonuçlara göre, refrakter olmayan sülfürlü altın-gümüş cevherinden flotasyon yöntemi ile doğrudan izabeye gönderilebilecek nitelikte bir konsantre elde edilebileceği belirlenmiştir. Flotasyon kinetiği ile ilgili çalışmalarda ikinci derece kinetik modelinin bu cevher için uygulanabilir olduğu ve ikinci dereceden flotasyon kinetik sabitleri göz önüne alındığında, gümüşün altına göre 2,5 kat daha fazla flotasyon hızına sahip olduğu sonucuna varılmıştır.

Supporting Institution

Esan Eczacıbaşı Endüstriyel Hammaddeler San. ve Tic. A.Ş

Thanks

Bu çalışmada numune temininde, mineralojik ve kimyasal analizlerde destek sağladıkları için Esan Eczacıbaşı Endüstriyel Hammaddeler San. ve Tic. A.Ş firmasına çok teşekkür ederiz.

References

  • [1] A.F. Taggart, “”Ores and Industrial Minerals”, Handbook of Mineral Dressing, vol. 12, pp.116-119, New York: Wiley, 1945.
  • [2] R. Dunne, “Flotation of gold and gold-bearing ores”, Advances in Gold Ore Processing. In M.D. Adams (Ed.), Netherlands: Elsevier, pp. 315–338, 2016.
  • [3] B. Damjonavic, J.R. Goode, Canadian milling practice, CIM Special, vol. 49, pp. 3-74, 2000.
  • [4] A. Winckers, “Overview of recent developments in flotation technology and plant practice for copper ores”, Proceedings of Mineral processing plant design, practice and control, Colorado: The society for mining, metallurgy and exploration, pp.1124-1140, 2002.
  • [5] D.R. Nagaraj, “Developments of new flotation chemicals” Transaction Indian Institute Metals, vol. 50(5), pp. 355-363, 1997.
  • [6] A.J. Teague, J.S.J. Van Deventer, C.I Swaminathan, “A conceptual model for gold flotation”, Minerals Engineering, vol. 12, pp. 1000-1019, 1999.
  • [7] G.C. Allan, J.T. Woodcock, “A review of flotation of native gold and electrum”, Minerals Engineering, vol. 14(9), 931-962, 2001.
  • [8] S.L. Chryssoulis, S. Dimov, Speciation of sorbed gold, 36th CMP Proceedings Ottowa: Canadian Institute of Mining, Metallurgy and Petroleum, pp. 455-472, 2004.
  • [9] D.R. Nagaraj, J.S. Brinen, R.S. Farinato, J. Lee, “A study of the intreactions of dicresyl monothiohosphate with noble metals using electrochemical, wetting and spectroscopic methods”, Langmui, vol. 8, pp. 1943-1949, 1991.
  • [10] Cytec, “Flotation of Sulfide Ores”, Mining Chemical Handbook, pp. 145-148, 2010.
  • [11] F. Azgomi, C.O. Gomez, J.A. Finch, “Frother persistence: a measure using gas holdup”, Minerals Engineering, vol. 22 (9-10), pp. 874-878, 2009.
  • [12] R.R. Klimpel, “A review of sulphide mineral collector practice Advances in Flotation Technology”. In B.K. Parekh, J.D. Miller (Eds.), Littleton: SME, pp. 115-127, 1999.
  • [13] L.A. Goold, Private Communication, Chemical and Mining Services, Sydney, 1990.
  • [14] S.M. Bulatovic, “Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold bearing sulphides”, Minerals Engineering, vol. 10(9), pp. 895-908, 1997.
  • [15] N. Acarkan, G. Bulut, A. Gul, O. Kangal, F. Karakaş, O. Kökkılıç, G. Önal, “The effect of collector’s type on gold and silver flotation in a complex ore”, Separation Science and Technology, vol. 46, pp. 283-289, 2011.
  • [16] C.T. O’Connor, R.C. Dunne, “The practice of pyrite flotation in South Africa and Australia”, Minerals Engineering, vol. 4(7-11), pp. 1057-1069, 1991.
  • [17] N.K. Mendiratta, “Kinetic studies of sulfide mineral oxidation and xanthate adsorption”, (Doctoral thesis), Virginia Polytechnic Institute and State University, Virginia, 2000.
  • [18] J. Leppinen, “FTIR and flotation investigation of adsorption of diethyldithiophosphate on sulfide minerals”, Technical Research Centre of Finland, Report No.726., 1991.
  • [19] T. Güler, C. Hiçyılmaz, “Hydrophobicity of chalcopyrite with dithiophosphate and dithiophosphinate in electrochemically controlled condition”, Colloids and Surfaces A: Physicochemical Engineering Aspect , vol. 235, pp. 11-15, 2004.
  • [20] C.I Basilio, D.S., Kim, R.H. Yoon, Studies on the use of monothiophosphates for precious metals flotation, Minerals Engineering, vol. 5(3-5), pp. 397-409, 1992a.
  • [21] P.A. Mingione, “Use of Aerophine 3418 A promoter for sulfide minerals flotation”, Proceedings of 22nd Canadian Mineral Processors Conference Montreal, pp.485-508, 1990.
  • [22] C.I. Basilio, D.S. Kim, R.H. Yoon, “Interaction of thiophosphinate collectors with precious metals”. SME Annual Meeting, Arizona, The Society for Mining, Metallurgy and Exploration, Inc., Littleton, Colorado, pp.92-174 1992b.
  • [23] P. Ofori, G. O’Brien, P. Hapugoda, B. Firth, “Distributed flotation kinetics models – A new implementation approach for coal flotation”, Minerals Engineering, vol. 66-68, pp. 77-83, 2014.
  • [24] A. Gupta, D.S Yan, “Mineral Processing Design and Operations: An Introduction”, Netherlands: Elsevier, 2006.
  • [25] S.M. Bulatovic, “Handbook of Flotation Reagents, Chemistry, Theory and Practice: Flotation of Sulfide Ores, Amsterdam: Elsevier, vol. 1, pp. 235–293, 2007.
  • [26] X. Bu, G. Xie, Y. Peng, L. Ge, C. Ni, “Kinetics of Flotation. Order of Process, Rate Constant Distribution and Ultimate Recovery”, Physicochemical Problems of Mineral Processing, vol. 53(1), pp. 342-365. 2016.
  • [27] S. Kelebek, B. Nanthakumar, “Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation”, International journal of Mineral Processing, vol. 84, pp. 69-80, 2007.
  • [28] K. Jiang, J.E. Dickinson, K.P. Galvin, “The kinetics of Fast Flotation using the Reflux Flotation Cell”, Chemical Engineering Science, vol. 196, pp. 463-477, 2019.
  • [29] H.G. Zuniga, “Flotation recovery is an exponential function of its rate”, Bo In. Soc. Nac. Min. (Santiago), vol. 47, pp. 83–86, 1935.
  • [30] J. R. Schuhmann, “Flotation Kinetics I: Methods for steady-state study of flotation problems”, J. Phys. Chem, vol. 46 (8), pp. 891-902, 1942.
  • [31] X. De-gang, L. Cong, C. Yi-wan, X. Yong-fang, “Non-first-order Kinetics Modelling Method for Stibnite Flotation Process”, IFAC (International Federation of Automatic Control) Papers Online, vol. 51-21, pp. 317-322, 2018.
  • [32] N. Arbiter, Flotation rates and flotation efficiency. Trans. AIME. Sept., pp. 791-796. 1951.
  • [33] S.P. Mehrotra, P.C. Kapur, “The effects of aeration rate, particle size and pulp density on the flotation rate distributions”, Powder Technology, vol. 9(74), pp. 213–219, 1974.
  • [34] A.V. Nguyen, H.J., Schulze, “Colloid Science of Flotation”, Chapter 30, in Surfactant Series vol. 118. Marcel Dekker, Inc, New York, 2004.
Year 2020, Volume: 9 Issue: 2, 1039 - 1053, 07.08.2020
https://doi.org/10.28948/ngumuh.693562

Abstract

References

  • [1] A.F. Taggart, “”Ores and Industrial Minerals”, Handbook of Mineral Dressing, vol. 12, pp.116-119, New York: Wiley, 1945.
  • [2] R. Dunne, “Flotation of gold and gold-bearing ores”, Advances in Gold Ore Processing. In M.D. Adams (Ed.), Netherlands: Elsevier, pp. 315–338, 2016.
  • [3] B. Damjonavic, J.R. Goode, Canadian milling practice, CIM Special, vol. 49, pp. 3-74, 2000.
  • [4] A. Winckers, “Overview of recent developments in flotation technology and plant practice for copper ores”, Proceedings of Mineral processing plant design, practice and control, Colorado: The society for mining, metallurgy and exploration, pp.1124-1140, 2002.
  • [5] D.R. Nagaraj, “Developments of new flotation chemicals” Transaction Indian Institute Metals, vol. 50(5), pp. 355-363, 1997.
  • [6] A.J. Teague, J.S.J. Van Deventer, C.I Swaminathan, “A conceptual model for gold flotation”, Minerals Engineering, vol. 12, pp. 1000-1019, 1999.
  • [7] G.C. Allan, J.T. Woodcock, “A review of flotation of native gold and electrum”, Minerals Engineering, vol. 14(9), 931-962, 2001.
  • [8] S.L. Chryssoulis, S. Dimov, Speciation of sorbed gold, 36th CMP Proceedings Ottowa: Canadian Institute of Mining, Metallurgy and Petroleum, pp. 455-472, 2004.
  • [9] D.R. Nagaraj, J.S. Brinen, R.S. Farinato, J. Lee, “A study of the intreactions of dicresyl monothiohosphate with noble metals using electrochemical, wetting and spectroscopic methods”, Langmui, vol. 8, pp. 1943-1949, 1991.
  • [10] Cytec, “Flotation of Sulfide Ores”, Mining Chemical Handbook, pp. 145-148, 2010.
  • [11] F. Azgomi, C.O. Gomez, J.A. Finch, “Frother persistence: a measure using gas holdup”, Minerals Engineering, vol. 22 (9-10), pp. 874-878, 2009.
  • [12] R.R. Klimpel, “A review of sulphide mineral collector practice Advances in Flotation Technology”. In B.K. Parekh, J.D. Miller (Eds.), Littleton: SME, pp. 115-127, 1999.
  • [13] L.A. Goold, Private Communication, Chemical and Mining Services, Sydney, 1990.
  • [14] S.M. Bulatovic, “Flotation behaviour of gold during processing of porphyry copper-gold ores and refractory gold bearing sulphides”, Minerals Engineering, vol. 10(9), pp. 895-908, 1997.
  • [15] N. Acarkan, G. Bulut, A. Gul, O. Kangal, F. Karakaş, O. Kökkılıç, G. Önal, “The effect of collector’s type on gold and silver flotation in a complex ore”, Separation Science and Technology, vol. 46, pp. 283-289, 2011.
  • [16] C.T. O’Connor, R.C. Dunne, “The practice of pyrite flotation in South Africa and Australia”, Minerals Engineering, vol. 4(7-11), pp. 1057-1069, 1991.
  • [17] N.K. Mendiratta, “Kinetic studies of sulfide mineral oxidation and xanthate adsorption”, (Doctoral thesis), Virginia Polytechnic Institute and State University, Virginia, 2000.
  • [18] J. Leppinen, “FTIR and flotation investigation of adsorption of diethyldithiophosphate on sulfide minerals”, Technical Research Centre of Finland, Report No.726., 1991.
  • [19] T. Güler, C. Hiçyılmaz, “Hydrophobicity of chalcopyrite with dithiophosphate and dithiophosphinate in electrochemically controlled condition”, Colloids and Surfaces A: Physicochemical Engineering Aspect , vol. 235, pp. 11-15, 2004.
  • [20] C.I Basilio, D.S., Kim, R.H. Yoon, Studies on the use of monothiophosphates for precious metals flotation, Minerals Engineering, vol. 5(3-5), pp. 397-409, 1992a.
  • [21] P.A. Mingione, “Use of Aerophine 3418 A promoter for sulfide minerals flotation”, Proceedings of 22nd Canadian Mineral Processors Conference Montreal, pp.485-508, 1990.
  • [22] C.I. Basilio, D.S. Kim, R.H. Yoon, “Interaction of thiophosphinate collectors with precious metals”. SME Annual Meeting, Arizona, The Society for Mining, Metallurgy and Exploration, Inc., Littleton, Colorado, pp.92-174 1992b.
  • [23] P. Ofori, G. O’Brien, P. Hapugoda, B. Firth, “Distributed flotation kinetics models – A new implementation approach for coal flotation”, Minerals Engineering, vol. 66-68, pp. 77-83, 2014.
  • [24] A. Gupta, D.S Yan, “Mineral Processing Design and Operations: An Introduction”, Netherlands: Elsevier, 2006.
  • [25] S.M. Bulatovic, “Handbook of Flotation Reagents, Chemistry, Theory and Practice: Flotation of Sulfide Ores, Amsterdam: Elsevier, vol. 1, pp. 235–293, 2007.
  • [26] X. Bu, G. Xie, Y. Peng, L. Ge, C. Ni, “Kinetics of Flotation. Order of Process, Rate Constant Distribution and Ultimate Recovery”, Physicochemical Problems of Mineral Processing, vol. 53(1), pp. 342-365. 2016.
  • [27] S. Kelebek, B. Nanthakumar, “Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation”, International journal of Mineral Processing, vol. 84, pp. 69-80, 2007.
  • [28] K. Jiang, J.E. Dickinson, K.P. Galvin, “The kinetics of Fast Flotation using the Reflux Flotation Cell”, Chemical Engineering Science, vol. 196, pp. 463-477, 2019.
  • [29] H.G. Zuniga, “Flotation recovery is an exponential function of its rate”, Bo In. Soc. Nac. Min. (Santiago), vol. 47, pp. 83–86, 1935.
  • [30] J. R. Schuhmann, “Flotation Kinetics I: Methods for steady-state study of flotation problems”, J. Phys. Chem, vol. 46 (8), pp. 891-902, 1942.
  • [31] X. De-gang, L. Cong, C. Yi-wan, X. Yong-fang, “Non-first-order Kinetics Modelling Method for Stibnite Flotation Process”, IFAC (International Federation of Automatic Control) Papers Online, vol. 51-21, pp. 317-322, 2018.
  • [32] N. Arbiter, Flotation rates and flotation efficiency. Trans. AIME. Sept., pp. 791-796. 1951.
  • [33] S.P. Mehrotra, P.C. Kapur, “The effects of aeration rate, particle size and pulp density on the flotation rate distributions”, Powder Technology, vol. 9(74), pp. 213–219, 1974.
  • [34] A.V. Nguyen, H.J., Schulze, “Colloid Science of Flotation”, Chapter 30, in Surfactant Series vol. 118. Marcel Dekker, Inc, New York, 2004.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Mining Engineering
Authors

Ş. Beste Aydın 0000-0003-3873-6593

Deniz Aydın This is me 0000-0003-4395-6515

Alim Gül This is me 0000-0002-1087-6589

Publication Date August 7, 2020
Submission Date February 26, 2020
Acceptance Date June 29, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Aydın, Ş. B., Aydın, D., & Gül, A. (2020). REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1039-1053. https://doi.org/10.28948/ngumuh.693562
AMA Aydın ŞB, Aydın D, Gül A. REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ. NOHU J. Eng. Sci. August 2020;9(2):1039-1053. doi:10.28948/ngumuh.693562
Chicago Aydın, Ş. Beste, Deniz Aydın, and Alim Gül. “REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9, no. 2 (August 2020): 1039-53. https://doi.org/10.28948/ngumuh.693562.
EndNote Aydın ŞB, Aydın D, Gül A (August 1, 2020) REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9 2 1039–1053.
IEEE Ş. B. Aydın, D. Aydın, and A. Gül, “REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ”, NOHU J. Eng. Sci., vol. 9, no. 2, pp. 1039–1053, 2020, doi: 10.28948/ngumuh.693562.
ISNAD Aydın, Ş. Beste et al. “REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 9/2 (August 2020), 1039-1053. https://doi.org/10.28948/ngumuh.693562.
JAMA Aydın ŞB, Aydın D, Gül A. REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ. NOHU J. Eng. Sci. 2020;9:1039–1053.
MLA Aydın, Ş. Beste et al. “REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 9, no. 2, 2020, pp. 1039-53, doi:10.28948/ngumuh.693562.
Vancouver Aydın ŞB, Aydın D, Gül A. REFRAKTER OLMAYAN SÜLFÜRLÜ ALTIN–GÜMÜŞ CEVHERİNİN FLOTASYON DAVRANIŞININ İNCELENMESİ. NOHU J. Eng. Sci. 2020;9(2):1039-53.

23135