Research Article
BibTex RIS Cite

Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi

Year 2021, Volume: 10 Issue: 1, 23 - 32, 15.01.2021
https://doi.org/10.28948/ngumuh.752396

Abstract

Bu çalışmada, araç lastiği üretim prosesinde preslenen hammadde hamurunun birbirine yapışmasını engellemek için kullanılan yüzey aktif madde içeren atık suyun, konvansiyonel koagülasyon ve mikrodalga oksidasyonu destekli elektrokoagülasyon prosesleri ile arıtımı incelenmiştir. Prosesler Taguchi deney tasarımı yöntemi (L8) ile maksimum kimyasal oksijen ihtiyacı giderimini sağlayacak biçimde optimize edilmiştir. Pareto analizi ile mikrodalga oksidasyonu destekli elektrokoagülasyon prosesinde en etkili parametrenin mikrodalga süresi, konvansiyonel koagülasyon prosesinde ise FeCl3.7H2O dozu olduğu bulunmuştur. Varyans analizi ile iki proses için de belirlenen modellerin kimyasal oksijen ihtiyacı giderimini açıklamada anlamlı olduğu belirlenmiştir. Optimum deneysel koşullardaki kimyasal oksijen ihtiyacı giderimi, kimyasal çamur üretimi, işletme maliyeti ve proseslerin tercih edilebilirlik seviyeleri dikkate alınarak, çok kriterli karar verme süreçlerinden olan PROMETHEE yöntemi ile en uygun proses mikrodalga oksidasyonu destekli elektrokoagülasyon olarak belirlenmiştir. Mikrodalga oksidasyonu destekli elektrokoagülasyon prosesinde, optimum şartlarda kimyasal oksijen ihtiyacı giderim verimi, çamur miktarı ve işletim maliyetleri sırasıyla % 66.9, 6.27 g/L ve 1.195 €/L olarak bulunmuştur. Prosesinin seçiminde kimyasal oksijen ihtiyacı giderim verimi ve çamur miktarı kriterlerinin pozitif yönde etki ettikleri belirlenmiştir.

References

  • [1] K. Lawrence, L.K. Wang, Y.T. Yung-Tse Hung, H. Howard, H.H Lo, and C. Constantine Yapijakis, Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker Publishing, New York, 2004.
  • [2] J. Kaleta, and M. Elektorowicz, The removal of anionic surfactants from water in coagulation process, Environmental Technology (United Kingdom), 34(5-8), 999–1005, 2013. https://doi.org/10.1080/ 09593330.2012.733415
  • [3] M.J. Scott and M.N. Jones, The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1508(1-2), 235-251, 2000. https://doi.org/10.1016/S0304-4157(00)00013-7
  • [4] S.M. Mirbahoush, N. Chaibakhsh and Z. Moradi-Shoeili, Highly efficient removal of surfactant from industrial effluents using flaxseed mucilage in coagulation/photo-Fenton oxidation process. Chemosphere, 231(51-59), 2019. https://doi.org/ 10.1016/j.chemosphere.2019.05.118
  • [5] M.A. Aboulhassan, S. Souabi, A. Yaacoubi, and M. Baudu, Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science & Technology, 3(4), 327–332, 2006. https://doi.org/ 10. 1007/BF03325941
  • [6] S. Verma, B. Prasad and I.M. Mishra, Pretreatment of petrochemical wastewater by coagulation and flocculation and the sludge characteristics. Journal of Hazardous Materials, 178(1-3), 1055-1064, 2010. https://doi.org/10.1016/j.jhazmat.2010.02.047
  • [7] A.A. Siyal, M.R. Shamsuddin, A. Low and N.E Rabat, A review on recent developments in the adsorption of surfactants from wastewater. Journal of Environmental Management, 254, 109797, 2020. https://doi.org/ 10.1016/j.jenvman.2019.109797
  • [8] A.G.L. Moura, V.B. Centurion, D.Y. Okada, F. Motteran, T.P. Delforno, V.M. Oliveira, and M.B.A Varesche, Laundry wastewater and domestic sewage pilot-scale anaerobic treatment: Microbial community resilience regarding sulfide production. Journal of Environmental Management, 251, 109495, 2019. https://doi.org/10.1016/j.jenvman.2019.109495
  • [9] A. Dhuiib, N. Hamad, and I. Hassairi, Degradation of anionic surfactants by Citrobacter braakii. Process Biochemistry, 38(8), 1245- 1250, 2003. https://doi.org/ 10.1016/S0032-9592(02)00322-9
  • [10] C.V. Faria, T.P. Delforno, D.Y. Okada, and M.B.A. Varesche, Evaluation of anionic surfactant removal by anaerobic degradation of commercial laundry wastewater and domestic sewage. Environmental Technology, 40(8), 988-996, 2019. https://doi.org/ 10.1080/09593330.2017.1414317
  • [11] J. Huang, L. Zhu, G. Zeng, L. Shi, Y. Shi, K. Yi, and X. Li, Recovery of Cd(II) and surfactant in permeate from MEUF by foam fractionation with anionic-nonionic surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 81-88, 2019. https://doi.org/10.1016/j.colsurfa.2019.03.010
  • [12] B. Mondal, A. Adak, and P. Datta, UV-H2O2 advanced oxidation of anionic surfactant: reaction kinetics, effects of interfering substances and operating conditions. Environmental Engineering & Management Journal, 18(6), 1245-1254, 2019. https://doi.org/10.30638/eemj.2019.119
  • [13] F. Aoudjit, O. Cherifi, and D. Halliche, Simultaneously efficient adsorption and photocatalytic degradation of sodium dodecyl sulfate surfactant by one-pot synthesized TiO2/layered double hydroxide materials. Separation Science and Technology, 54(7), 1095-1105, 2019. https://doi.org/10.1080/01496395.2018.1527352
  • [14] R.C. Kaggwa, C.L. Mulalelo, P. Denny, and T.O Okurut, The impact of alum discharges on a natural tropical wetland in Uganda. Water Research, 35(3) 795-807, 2001. https://doi.org/10.1016/S0043-1354 (00)00301-8
  • [15] C. Zhang, K.T. Valsaraj, W.D. Constant, and D. Roy, Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub- and supra-critical micelle concentrations (CMCs). Water Research, 33(1), 115-124, 1999. https://doi.org/10.1016/S0043-1354(98) 00 170-5
  • [16] M.I. Bautista-Toledo, J. Rivera-Utrilla, J. D. Méndez-Díaz, M. Sánchez-Polo, and F. Carrasco-Marín, Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. Journal of Colloid and Interface Science, 418, 113-119, 2014. https://doi.org/10.1016/j.jcis.2013.12.001
  • [17] H. Hidaka, T. Oyama, T. Horiuchi, T. Koike, and N. Serpone, Photo- induced oxidative synergistic degradation of mixed anionic/cationic surfactant systems in aqueous dispersions. A detailed study of the DBS/HTAB system. Applied Catalysis B: Environmental, 99(3-4), 485- 489, 2010. https://doi.org/ 10.1016/j.apcatb.2010.06.041
  • [18] S. Sharma, and H. Simsek, Treatment of canola-oil refinery effluent using electrochemical methods: A comparison between combined electrocoagulation + electrooxidation and electrochemical peroxidation methods. Chemosphere, 221, 630-639, 2019. https://doi.org/10.1016/j.chemosphere.2019.01.066
  • [19] APHA, Standard methods for the examination of water and wastewater. 21st edn. Washington, DC: American Public Health Association, 2005.
  • [20] P.J. Ross, Taguchi Techniques for Quality Engineering. McGraw Hill Internatioanal, New York, 1996.
  • [21] F. Urfalıoğlu, and T. Genç, Çok kriterli karar verme teknikleri ile Türkiye’nin ekonomik performansının avrupa birliği üye ülkeleri ile karşılaştırılması. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, 35, 329-360, 2015. https://doi.org/ 10.14780/iibdergi.201324469
  • [22] M. Gul, E. Celik, A. Taskin Gumus, and A.F. Guneri, A fuzzy logic based promethee method for material selection problems. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 68-79, 2018. https://doi.org/10.1016/j.bjbas.2017.07.002
  • [23] J.P. Brans, P.H. Vincke, and B. Mareschal, How to select and how to rank projects: the promethee method. European Journal of Operational Research, 24(2), 228-238, 1986. https://doi.org/10.1016/0377-2217(86) 90044-5
  • [24] M. Behzadian, R.B Kazemzadeh, A. Albadvi, and M. Aghdasi, PROMETHEE: a comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198- 215, 2010. https://doi.org/10.1016/j.ejor.2009.01.021
  • [25] J. Behin, N. Farhadian, M. Ahmadi, and M. Parvizi, Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye. Journal of Water Process Engineering, 8, 171-178, 2015. https://doi.org/10.1016/ j.jwpe.2015.10.003
  • [26] M. Asem, W.M.F.W. Nawawi, and D.N. Jimat, Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: optimization using two-level factorial design. IOP Conference Series: Materials Science and Engineering, 368, 012005, 2018. https://doi.org/ 10.1088/1757-899X/368/1/012005
  • [27] M.M Abdulredha, S.A. Hussain, and L.C. Abdullah, Separation emulsion via non-ionic surfactant: an optimization. Processes, 7(6), 382, 2019. https://doi.org/10.3390/pr7060382
  • [28] P.S. Bhandari, & P.R. Gogate, Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate. Korean Journal of Chemical Engineering, 36(12), 200-2007, 2019. https://doi.org/ 10.1007/s11814-019-0390-z
  • [29] B.H. Park, S. Kim, A.Y. Seo, & T.G. Lee, Evaluation of optimal conditions for anionic surfactant removal in wastewater. Chemosphere, 263, 128174, 2021. https:// doi.org/10.1016/j.chemosphere.2020.128174
  • [30] E. Gengec, M. Kobya, E. Demirbas, A. Akyol, and K. Oktor, Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation. Desalination, 286, 200-209, 2012. https://doi.org/ 10.1016/j.desal.2011.11.023
  • [31] G. Tuzkaya, B. Gülsün, C. Kahraman, and D. Özgen, an İntegrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. Expert Systems with Applications, 37(4), 2853-2863, 2010. https://doi.org/ 10.1016/j.eswa.2009.09.004
  • [32] R.J. Li, Fuzzy method in group decision making. Computers & Mathematics with Applications, 38 (1), 91-101, 1999. https://doi.org/10.1016/S0898-1221 (99) 00172-8

Evaluation of coagulation based treatment alternatives of wastewater containing surfactant from tire manufacturing by PROMETHEE approach

Year 2021, Volume: 10 Issue: 1, 23 - 32, 15.01.2021
https://doi.org/10.28948/ngumuh.752396

Abstract

In this study, the treatment of wastewater containing surfactant used to prevent the sticking of the raw material pulp pressed in the tire production process, with conventional coagulation and microwave oxidation-supported electrocoagulation processes was investigated. The processes were optimized to ensure maximum chemical oxygen demand removal by the Taguchi experimental design method (L8). With Pareto analysis, it was found that the most effective parameter in microwave oxidation-supported electrocoagulation processes is microwave duration while the most effective parameter in the conventional coagulation process was FeCl3.7H2O dose. Analysis of variance found that the models determined for both processes were significant in explaining chemical oxygen demand removal. The appropriate process has been determined as the microwave oxidation-supported electrocoagulation, with the PROMETHEE method considering the optimum experimental conditions, chemical oxygen demand removal, chemical sludge production, operating cost and the preferability criteria of the processes. In microwave oxidation-supported electrocoagulation process, under optimum conditions, chemical oxygen demand removal efficiency, the amount of sludge production and operating costs were found as 66.9 %, 6.27 g / L and 1.195 € / L, respectively. It was determined that the criteria of chemical oxygen demand removal efficiency and sludge amount had a positive effect on the selection of the process.

References

  • [1] K. Lawrence, L.K. Wang, Y.T. Yung-Tse Hung, H. Howard, H.H Lo, and C. Constantine Yapijakis, Handbook of Industrial and Hazardous Wastes Treatment. Marcel Dekker Publishing, New York, 2004.
  • [2] J. Kaleta, and M. Elektorowicz, The removal of anionic surfactants from water in coagulation process, Environmental Technology (United Kingdom), 34(5-8), 999–1005, 2013. https://doi.org/10.1080/ 09593330.2012.733415
  • [3] M.J. Scott and M.N. Jones, The biodegradation of surfactants in the environment. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1508(1-2), 235-251, 2000. https://doi.org/10.1016/S0304-4157(00)00013-7
  • [4] S.M. Mirbahoush, N. Chaibakhsh and Z. Moradi-Shoeili, Highly efficient removal of surfactant from industrial effluents using flaxseed mucilage in coagulation/photo-Fenton oxidation process. Chemosphere, 231(51-59), 2019. https://doi.org/ 10.1016/j.chemosphere.2019.05.118
  • [5] M.A. Aboulhassan, S. Souabi, A. Yaacoubi, and M. Baudu, Removal of surfactant from industrial wastewaters by coagulation flocculation process. International Journal of Environmental Science & Technology, 3(4), 327–332, 2006. https://doi.org/ 10. 1007/BF03325941
  • [6] S. Verma, B. Prasad and I.M. Mishra, Pretreatment of petrochemical wastewater by coagulation and flocculation and the sludge characteristics. Journal of Hazardous Materials, 178(1-3), 1055-1064, 2010. https://doi.org/10.1016/j.jhazmat.2010.02.047
  • [7] A.A. Siyal, M.R. Shamsuddin, A. Low and N.E Rabat, A review on recent developments in the adsorption of surfactants from wastewater. Journal of Environmental Management, 254, 109797, 2020. https://doi.org/ 10.1016/j.jenvman.2019.109797
  • [8] A.G.L. Moura, V.B. Centurion, D.Y. Okada, F. Motteran, T.P. Delforno, V.M. Oliveira, and M.B.A Varesche, Laundry wastewater and domestic sewage pilot-scale anaerobic treatment: Microbial community resilience regarding sulfide production. Journal of Environmental Management, 251, 109495, 2019. https://doi.org/10.1016/j.jenvman.2019.109495
  • [9] A. Dhuiib, N. Hamad, and I. Hassairi, Degradation of anionic surfactants by Citrobacter braakii. Process Biochemistry, 38(8), 1245- 1250, 2003. https://doi.org/ 10.1016/S0032-9592(02)00322-9
  • [10] C.V. Faria, T.P. Delforno, D.Y. Okada, and M.B.A. Varesche, Evaluation of anionic surfactant removal by anaerobic degradation of commercial laundry wastewater and domestic sewage. Environmental Technology, 40(8), 988-996, 2019. https://doi.org/ 10.1080/09593330.2017.1414317
  • [11] J. Huang, L. Zhu, G. Zeng, L. Shi, Y. Shi, K. Yi, and X. Li, Recovery of Cd(II) and surfactant in permeate from MEUF by foam fractionation with anionic-nonionic surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 570, 81-88, 2019. https://doi.org/10.1016/j.colsurfa.2019.03.010
  • [12] B. Mondal, A. Adak, and P. Datta, UV-H2O2 advanced oxidation of anionic surfactant: reaction kinetics, effects of interfering substances and operating conditions. Environmental Engineering & Management Journal, 18(6), 1245-1254, 2019. https://doi.org/10.30638/eemj.2019.119
  • [13] F. Aoudjit, O. Cherifi, and D. Halliche, Simultaneously efficient adsorption and photocatalytic degradation of sodium dodecyl sulfate surfactant by one-pot synthesized TiO2/layered double hydroxide materials. Separation Science and Technology, 54(7), 1095-1105, 2019. https://doi.org/10.1080/01496395.2018.1527352
  • [14] R.C. Kaggwa, C.L. Mulalelo, P. Denny, and T.O Okurut, The impact of alum discharges on a natural tropical wetland in Uganda. Water Research, 35(3) 795-807, 2001. https://doi.org/10.1016/S0043-1354 (00)00301-8
  • [15] C. Zhang, K.T. Valsaraj, W.D. Constant, and D. Roy, Aerobic biodegradation kinetics of four anionic and nonionic surfactants at sub- and supra-critical micelle concentrations (CMCs). Water Research, 33(1), 115-124, 1999. https://doi.org/10.1016/S0043-1354(98) 00 170-5
  • [16] M.I. Bautista-Toledo, J. Rivera-Utrilla, J. D. Méndez-Díaz, M. Sánchez-Polo, and F. Carrasco-Marín, Removal of the surfactant sodium dodecylbenzenesulfonate from water by processes based on adsorption/bioadsorption and biodegradation. Journal of Colloid and Interface Science, 418, 113-119, 2014. https://doi.org/10.1016/j.jcis.2013.12.001
  • [17] H. Hidaka, T. Oyama, T. Horiuchi, T. Koike, and N. Serpone, Photo- induced oxidative synergistic degradation of mixed anionic/cationic surfactant systems in aqueous dispersions. A detailed study of the DBS/HTAB system. Applied Catalysis B: Environmental, 99(3-4), 485- 489, 2010. https://doi.org/ 10.1016/j.apcatb.2010.06.041
  • [18] S. Sharma, and H. Simsek, Treatment of canola-oil refinery effluent using electrochemical methods: A comparison between combined electrocoagulation + electrooxidation and electrochemical peroxidation methods. Chemosphere, 221, 630-639, 2019. https://doi.org/10.1016/j.chemosphere.2019.01.066
  • [19] APHA, Standard methods for the examination of water and wastewater. 21st edn. Washington, DC: American Public Health Association, 2005.
  • [20] P.J. Ross, Taguchi Techniques for Quality Engineering. McGraw Hill Internatioanal, New York, 1996.
  • [21] F. Urfalıoğlu, and T. Genç, Çok kriterli karar verme teknikleri ile Türkiye’nin ekonomik performansının avrupa birliği üye ülkeleri ile karşılaştırılması. Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, 35, 329-360, 2015. https://doi.org/ 10.14780/iibdergi.201324469
  • [22] M. Gul, E. Celik, A. Taskin Gumus, and A.F. Guneri, A fuzzy logic based promethee method for material selection problems. Beni-Suef University Journal of Basic and Applied Sciences, 7(1), 68-79, 2018. https://doi.org/10.1016/j.bjbas.2017.07.002
  • [23] J.P. Brans, P.H. Vincke, and B. Mareschal, How to select and how to rank projects: the promethee method. European Journal of Operational Research, 24(2), 228-238, 1986. https://doi.org/10.1016/0377-2217(86) 90044-5
  • [24] M. Behzadian, R.B Kazemzadeh, A. Albadvi, and M. Aghdasi, PROMETHEE: a comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198- 215, 2010. https://doi.org/10.1016/j.ejor.2009.01.021
  • [25] J. Behin, N. Farhadian, M. Ahmadi, and M. Parvizi, Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: Application to decolorization of acid dye. Journal of Water Process Engineering, 8, 171-178, 2015. https://doi.org/10.1016/ j.jwpe.2015.10.003
  • [26] M. Asem, W.M.F.W. Nawawi, and D.N. Jimat, Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: optimization using two-level factorial design. IOP Conference Series: Materials Science and Engineering, 368, 012005, 2018. https://doi.org/ 10.1088/1757-899X/368/1/012005
  • [27] M.M Abdulredha, S.A. Hussain, and L.C. Abdullah, Separation emulsion via non-ionic surfactant: an optimization. Processes, 7(6), 382, 2019. https://doi.org/10.3390/pr7060382
  • [28] P.S. Bhandari, & P.R. Gogate, Microwave assisted persulfate induced degradation of sodium dodecyl benzene sulfonate. Korean Journal of Chemical Engineering, 36(12), 200-2007, 2019. https://doi.org/ 10.1007/s11814-019-0390-z
  • [29] B.H. Park, S. Kim, A.Y. Seo, & T.G. Lee, Evaluation of optimal conditions for anionic surfactant removal in wastewater. Chemosphere, 263, 128174, 2021. https:// doi.org/10.1016/j.chemosphere.2020.128174
  • [30] E. Gengec, M. Kobya, E. Demirbas, A. Akyol, and K. Oktor, Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation. Desalination, 286, 200-209, 2012. https://doi.org/ 10.1016/j.desal.2011.11.023
  • [31] G. Tuzkaya, B. Gülsün, C. Kahraman, and D. Özgen, an İntegrated fuzzy multi-criteria decision making methodology for material handling equipment selection problem and an application. Expert Systems with Applications, 37(4), 2853-2863, 2010. https://doi.org/ 10.1016/j.eswa.2009.09.004
  • [32] R.J. Li, Fuzzy method in group decision making. Computers & Mathematics with Applications, 38 (1), 91-101, 1999. https://doi.org/10.1016/S0898-1221 (99) 00172-8
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Elif Durna 0000-0003-4478-2967

Nevim Genç 0000-0002-6185-1090

Publication Date January 15, 2021
Submission Date June 13, 2020
Acceptance Date November 25, 2020
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Durna, E., & Genç, N. (2021). Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 23-32. https://doi.org/10.28948/ngumuh.752396
AMA Durna E, Genç N. Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi. NOHU J. Eng. Sci. January 2021;10(1):23-32. doi:10.28948/ngumuh.752396
Chicago Durna, Elif, and Nevim Genç. “Lastik üretiminden Kaynaklanan yüzey Aktif Madde içeren atık suların koagülasyon Bazlı arıtma Alternatiflerinin PROMETHEE yaklaşımı Ile değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 23-32. https://doi.org/10.28948/ngumuh.752396.
EndNote Durna E, Genç N (January 1, 2021) Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 23–32.
IEEE E. Durna and N. Genç, “Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi”, NOHU J. Eng. Sci., vol. 10, no. 1, pp. 23–32, 2021, doi: 10.28948/ngumuh.752396.
ISNAD Durna, Elif - Genç, Nevim. “Lastik üretiminden Kaynaklanan yüzey Aktif Madde içeren atık suların koagülasyon Bazlı arıtma Alternatiflerinin PROMETHEE yaklaşımı Ile değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 23-32. https://doi.org/10.28948/ngumuh.752396.
JAMA Durna E, Genç N. Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi. NOHU J. Eng. Sci. 2021;10:23–32.
MLA Durna, Elif and Nevim Genç. “Lastik üretiminden Kaynaklanan yüzey Aktif Madde içeren atık suların koagülasyon Bazlı arıtma Alternatiflerinin PROMETHEE yaklaşımı Ile değerlendirilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 23-32, doi:10.28948/ngumuh.752396.
Vancouver Durna E, Genç N. Lastik üretiminden kaynaklanan yüzey aktif madde içeren atık suların koagülasyon bazlı arıtma alternatiflerinin PROMETHEE yaklaşımı ile değerlendirilmesi. NOHU J. Eng. Sci. 2021;10(1):23-32.

23135