Research Article
BibTex RIS Cite

The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests

Year 2021, Volume: 10 Issue: 1, 412 - 419, 15.01.2021
https://doi.org/10.28948/ngumuh.791161

Abstract

Seawater exposure has adverse effects on fiber-reinforced polymer (FRP) composites' mechanical performance and service life because polymer matrix degradation caused by absorbed water can initiate FRP composites' irreversible damage. So, composites' performance under service conditions must be comprehensively evaluated and improved for safe usage in marine structures. For this purpose, the addition of nanoparticles into the polymer matrix can be an effective strategy to reinforce the polymer matrix against the seawater environment's detrimental effects. This paper presents the impact of graphene nanoplatelet (GNP) on basalt/epoxy composites' mechanical performance under long-term seawater aging. Experimental results of short beam shear tests revealed that the addition of 0.5 wt% GNP enhanced interlaminar shear strength by approximately 24 and 14% compared with the neat basalt/epoxy composites for seawater aged and unaged specimens, respectively. The dynamic mechanical analysis has also deduced that the multi-scale composite's transition temperature increased up to 5.7% compared to the neat basalt/epoxy composites.

References

  • Q. Liu, M. T. Shaw, R. S. Parnas, and A. M. McDonnell, Investigation of basalt fiber composite mechanical properties for applications in transportation, Polymer Composites, 27 (1), 41-8, 2006. https://doi.org/10.1002/pc.20162.
  • E. F. Şükür, Dry sliding friction and wear properties of caco3 nanoparticle filled epoxy/carbon fiber composites, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1108-17, 2020. https://doi.org/10.28948/ngumuh.725631.
  • M. Bagci, M. Demirci, E. F. Sukur, and H. B. Kaybal, The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites, Wear, 444, 203159, 2020. https://doi.org/10.1016/j.wear.2019.203159.
  • H. Burak Kaybal, A. Unuvar, Y. Kaynak, and A. Avcı, Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materials, Journal of Composite Materials, 54(2), 215-27, 2020. https://doi.org/10.1177/ 0021998319860245.
  • H. B. Kaybal, A. Ünüvar, M. Koyunbakan, and A. Avcı, A novelty optimization approach for drilling of CFRP nanocomposite laminates, The International Journal of Advanced Manufacturing Technology, 100 (9-12), 2995-3012, 2019. https://doi.org/10.1007/ s00170-018-2873-1.
  • V. Eskizeybek, H. Ulus, H. B. Kaybal, Ö. S. Şahin, and A. Avcı, Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites, Composites Part B: Engineering, 140, 223-31, 2018. https://doi.org/10.1016/j.compositesb. 2017.12.013.
  • H. B. Kaybal, H. Ulus, O. Demir, Ö. S. Şahin, and A. Avcı, Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites, Engineering Science and Technology, an International Journal, 21 (3), 399-407, 2018. https://doi.org/10.1016/j.jestch.2018.03.011.
  • M. T. Kim, K. Y. Rhee, I. Jung, S. J. Park, and D. Hui, Influence of seawater absorption on the vibration damping characteristics and fracture behaviors of basalt/CNT/epoxy multiscale composites, Composites Part B: Engineering, 63, 61-6, 2014. https://doi.org/ 10.1016/j.compositesb.2014.03.010.
  • M. K. Hossain et al., Effect of low velocity impact responses on durability of conventional and nanophased CFRP composites exposed to seawater, Polymer Degradation and Stability, 99, 180-9, 2014. https://doi.org/10.1016/j.polymdegradstab.2013.11.008.
  • Hasan Ulus, Halil Burak Kaybal, Volkan Eskizeybek, and A. Avcı, Enhanced Salty Water Durability of Halloysite Nanotube Reinforced Epoxy/Basalt Fiber Hybrid Composites, Fibers and Polymers, 20 (10), 2184-99, 2019. https://doi.org/10.1007/s12221-019-9316-y.
  • H. Ulus, H. B. Kaybal, V. Eskizeybek, and A. Avcı, Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites, Journal of Composite Materials, 54(20), 2761-79, 2020. https://doi.org/10.1177/002199832090 2821.
  • V. Startsev, M. Lebedev, K. Khrulev, M. Molokov, A. Frolov, and T. Nizina, Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers, Polymer Testing, 65, 281-96, 2018. https://doi.org/10.1016/j.polymertesting. 2017.12.007.
  • Z. Wang, X.-L. Zhao, G. Xian, G. Wu, R. S. Raman, and S. Al-Saadi, Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment, Construction and Building Materials, 156, 985-1004, 2017. https://doi.org/ 10.1016/j.conbuildmat.2017.09.045.
  • E. Barjasteh, C. Sutanto, T. Reddy, and J. Vinh, A graphene/graphite-based conductive polyamide 12 interlayer for increasing the fracture toughness and conductivity of carbon-fiber composites, Journal of Composite Materials, 51 (20), 2879-87, 2017 https://doi.org/10.1177/0021998317705707.
  • K. A. Imran, M. K. Hossain, M. Hosur, and S. Jeelani, Assessment of moisture barrier, mechanical, and thermal property of base/nanophased carbon-epoxy composites in seawater, Journal of Composite Materials, 2020 https://doi.org/10.1177/00219983 20953480.
  • S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, and K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites, Composites Science and Technology, 97, 90-9, 2014. https://doi.org/10.1016/j.compscitech. 2014.03.014.
  • H. Ulus, H. B. Kaybal, V. Eskizeybek, and A. Avcı, Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites, Fibers and Polymers, 20 (10), 2184-99, 2019. https://doi.org/10.1007/s12221-019-9316-y.
  • Y. Li, H. Zhang, Z. Huang, E. Bilotti, and T. Peijs, Graphite nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties, Journal of Nanomaterials, 2017, 2017. https://doi.org/10.1155/2017/5194872.
  • J. Naveen, M. Jawaid, E. S. Zainudin, M. Thariq Hameed Sultan, and R. Yahaya, Improved mechanical and moisture-resistant properties of woven hybrid epoxy composites by graphene nanoplatelets (GNP), Materials, 12 (8), 1249, 2019. https://doi.org/ 10.3390/ma12081249.
  • C.-L. Chiang, H.-Y. Chou, and M.-Y. Shen, Effect of environmental aging on mechanical properties of graphene nanoplatelet/nanocarbon aerogel hybrid-reinforced epoxy/carbon fiber composite laminates, Composites Part A: Applied Science and Manufacturing, 2020. https://doi.org/10.1016/ j.compositesa.2019.105718.
  • H. Khosravi and R. Eslami-Farsani, Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na+-montmorillonite nanoclay, Polymer Testing, 55, 135-142, 2016 https://doi.org/10.1016/j.polymertesting. 2016.08.011.
  • B. Wei, H. Cao, and S. Song, Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater, Corrosion Science, 53 (1), 426-31, 2011. https://doi.org/10.1016/j.corsci. 2010.09.053.
  • X. Wang, X. Zhao, and Z. Wu, Fatigue degradation and life prediction of basalt fiber-reinforced polymer composites after saltwater corrosion, Materials & Design, 163, 107529, 2019. https://doi.org/10.1016/ j.matdes.2018.12.001.
  • E. F. Sukur and G. Onal, Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance, Wear, 460, 203481, 2020. https://doi.org/10.1016/j.wear.2020. 203481.
  • H. Ulus, H. B. Kaybal, V. Eskizeybek, and A. Avcı, Halloysite Nanotube Reinforcement Endows Ameliorated Fracture Resistance of Seawater Aged Basalt/Epoxy Composites, Journal of Composite Materials, vol. Accepted paper, 2020. https://doi.org/ 10.1177/0021998320902821.
  • M. K. Hossain, M. M. R. Chowdhury, M. Hosur, S. Jeelani, and N. W. Bolden, Enhanced Properties of Epoxy Composite Reinforced With Amino-Functionalized Graphene Nanoplatelets, in ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 51483, 2015. https://doi.org/10.1115/ IMECE2015-51483 .
  • M. K. Hossain, M. M. R. Chowdhury, M. Hosur, S. Jeelani, and N. W. Bolden, Enhanced Properties of Epoxy Composite Reinforced With Amino-Functionalized Graphene Nanoplatelets, in ASME 2015 International Mechanical Engineering Congress and Exposition, 2015: American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/ IMECE2015-51483 .
  • J. Naveen, M. Jawaid, E. Zainudin, M. T. Sultan, and R. Yahaya, Improved Interlaminar Shear Behaviour of a New Hybrid Kevlar/Cocos Nucifera Sheath Composites with Graphene Nanoplatelets Modified Epoxy Matrix, Fibers and Polymers, 20 (8), 1749-53, 2019. https://doi.org/10.1007/s12221-019-3127-z.
  • U. R. Hashim and A. Jumahat, Improved tensile and fracture toughness properties of graphene nanoplatelets filled epoxy polymer via solvent compounding shear milling method, Materials Research Express, 6 (2), 025303, 2018. https://doi.org/10.1088/20531591/ aaeaf0.
  • Z. Jia, X. Feng, and Y. Zou, An investigation on mode II fracture toughness enhancement of epoxy adhesive using graphene nanoplatelets, Composites Part B: Engineering, 155, 452-56, 2018. https://doi.org/ 10.1016/j.compositesb.2018.09.094.
  • M. Bakir et al., Effects of environmental aging on physical properties of aromatic thermosetting copolyester matrix neat and nanocomposite foams, Polymer Degradation and Stability, 147, 49-56, 2018. https://doi.org/10.1016/j.polymdegradstab.2017.11.009.
  • X. F. Sánchez-Romate, P. Terán, S. González-Prolongo, M. Sánchez, and A. Ureña, Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films, Polymer Degradation and Stability, 109170, 2020. https://doi.org/10.1016/j.polymdegradstab.2020.109170.
  • S. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, and A. Ureña, Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins, European Polymer Journal, 61, 206-14, 2014. https://doi.org/10.1016/ j.eurpolymj.2014.09.022.
  • M. Jacob, B. Francis, S. Thomas, and K. Varughese, Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites, Polymer Composites, 27 (6), 671-80, 2006. https://doi.org/ 10.1002/pc.20250.
  • D. Pedrazzoli, A. Pegoretti, and K. Kalaitzidou, Synergistic effect of exfoliated graphite nanoplatelets and short glass fiber on the mechanical and interfacial properties of epoxy composites, Composites Science and Technology, 98, 15-21, 2014. https://doi.org/ 10.1016/j.compscitech.2014.04.019.
  • H. Alamri and I. M. Low, Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites, Materials & Design, 42, 214-22, 2012. https://doi.org/10.1016/j.matdes.2012. 05.060.

Deniz suyu yaşlandırmasının bazalt/grafen nanolevha-epoksi kompozitler üzerindeki etkisi: Dinamik Mekanik Analiz (DMA) ve kısa kiriş kayma testleri ile performans değerlendirmesi

Year 2021, Volume: 10 Issue: 1, 412 - 419, 15.01.2021
https://doi.org/10.28948/ngumuh.791161

Abstract

Deniz suyu maruziyeti, fiber takviyeli polimer (FTP) kompozitlerin mekanik performansı ve hizmet ömrü üzerinde olumsuz etkilere sahiptir. Absorbe edilen su polimer matris bozulmasına yol açarak FTP kompozitlerin geri dönüşümsüz hasarını başlatabilmektedir. Bu sebeple, FTP kompozitlerin deniz yapılarında güvenle kullanımı için, servis koşullarındaki performanslarının kapsamlı bir şekilde anlaşılması ve iyileştirilmesi gerekmektedir. Bu amaç doğrultusunda, nanoparçacıkların polimer matris içerisine eklenmesi, deniz suyu ortamının zararlı etkilerine karşı polimer matrisini güçlendirmek için etkili bir stratejidir. Bu makale, grafen nanolevha (GNL) takviyesinin bazalt/epoksi kompozitlerin uzun süreli deniz suyu yaşlanması altında mekanik performansı üzerindeki etkisini sunmaktadır. Kısa kiriş kayma test sonuçları, deniz suyunda yaşlandırılmış ve yaşlandırılmamış numuneler için saf bazalt/epoksi kompozitlere kıyasla ağırlıkça %0.5 GNL eklenmesinin tabakalar-arası arası kayma mukavemetini sırasıyla yaklaşık %24 ve %14 artırdığını ortaya koymuştur. Dinamik mekanik analizlerde, çok-ölçekli kompozitlerin geçiş sıcaklığının, saf bazalt/epoksi kompozitlere kıyasla %5.7'ye kadar yükseldiğini ortaya çıkarmıştır.

References

  • Q. Liu, M. T. Shaw, R. S. Parnas, and A. M. McDonnell, Investigation of basalt fiber composite mechanical properties for applications in transportation, Polymer Composites, 27 (1), 41-8, 2006. https://doi.org/10.1002/pc.20162.
  • E. F. Şükür, Dry sliding friction and wear properties of caco3 nanoparticle filled epoxy/carbon fiber composites, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 1108-17, 2020. https://doi.org/10.28948/ngumuh.725631.
  • M. Bagci, M. Demirci, E. F. Sukur, and H. B. Kaybal, The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites, Wear, 444, 203159, 2020. https://doi.org/10.1016/j.wear.2019.203159.
  • H. Burak Kaybal, A. Unuvar, Y. Kaynak, and A. Avcı, Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materials, Journal of Composite Materials, 54(2), 215-27, 2020. https://doi.org/10.1177/ 0021998319860245.
  • H. B. Kaybal, A. Ünüvar, M. Koyunbakan, and A. Avcı, A novelty optimization approach for drilling of CFRP nanocomposite laminates, The International Journal of Advanced Manufacturing Technology, 100 (9-12), 2995-3012, 2019. https://doi.org/10.1007/ s00170-018-2873-1.
  • V. Eskizeybek, H. Ulus, H. B. Kaybal, Ö. S. Şahin, and A. Avcı, Static and dynamic mechanical responses of CaCO3 nanoparticle modified epoxy/carbon fiber nanocomposites, Composites Part B: Engineering, 140, 223-31, 2018. https://doi.org/10.1016/j.compositesb. 2017.12.013.
  • H. B. Kaybal, H. Ulus, O. Demir, Ö. S. Şahin, and A. Avcı, Effects of alumina nanoparticles on dynamic impact responses of carbon fiber reinforced epoxy matrix nanocomposites, Engineering Science and Technology, an International Journal, 21 (3), 399-407, 2018. https://doi.org/10.1016/j.jestch.2018.03.011.
  • M. T. Kim, K. Y. Rhee, I. Jung, S. J. Park, and D. Hui, Influence of seawater absorption on the vibration damping characteristics and fracture behaviors of basalt/CNT/epoxy multiscale composites, Composites Part B: Engineering, 63, 61-6, 2014. https://doi.org/ 10.1016/j.compositesb.2014.03.010.
  • M. K. Hossain et al., Effect of low velocity impact responses on durability of conventional and nanophased CFRP composites exposed to seawater, Polymer Degradation and Stability, 99, 180-9, 2014. https://doi.org/10.1016/j.polymdegradstab.2013.11.008.
  • Hasan Ulus, Halil Burak Kaybal, Volkan Eskizeybek, and A. Avcı, Enhanced Salty Water Durability of Halloysite Nanotube Reinforced Epoxy/Basalt Fiber Hybrid Composites, Fibers and Polymers, 20 (10), 2184-99, 2019. https://doi.org/10.1007/s12221-019-9316-y.
  • H. Ulus, H. B. Kaybal, V. Eskizeybek, and A. Avcı, Halloysite nanotube reinforcement endows ameliorated fracture resistance of seawater aged basalt/epoxy composites, Journal of Composite Materials, 54(20), 2761-79, 2020. https://doi.org/10.1177/002199832090 2821.
  • V. Startsev, M. Lebedev, K. Khrulev, M. Molokov, A. Frolov, and T. Nizina, Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers, Polymer Testing, 65, 281-96, 2018. https://doi.org/10.1016/j.polymertesting. 2017.12.007.
  • Z. Wang, X.-L. Zhao, G. Xian, G. Wu, R. S. Raman, and S. Al-Saadi, Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment, Construction and Building Materials, 156, 985-1004, 2017. https://doi.org/ 10.1016/j.conbuildmat.2017.09.045.
  • E. Barjasteh, C. Sutanto, T. Reddy, and J. Vinh, A graphene/graphite-based conductive polyamide 12 interlayer for increasing the fracture toughness and conductivity of carbon-fiber composites, Journal of Composite Materials, 51 (20), 2879-87, 2017 https://doi.org/10.1177/0021998317705707.
  • K. A. Imran, M. K. Hossain, M. Hosur, and S. Jeelani, Assessment of moisture barrier, mechanical, and thermal property of base/nanophased carbon-epoxy composites in seawater, Journal of Composite Materials, 2020 https://doi.org/10.1177/00219983 20953480.
  • S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, and K. Schulte, Fracture toughness and failure mechanism of graphene based epoxy composites, Composites Science and Technology, 97, 90-9, 2014. https://doi.org/10.1016/j.compscitech. 2014.03.014.
  • H. Ulus, H. B. Kaybal, V. Eskizeybek, and A. Avcı, Enhanced salty water durability of halloysite nanotube reinforced epoxy/basalt fiber hybrid composites, Fibers and Polymers, 20 (10), 2184-99, 2019. https://doi.org/10.1007/s12221-019-9316-y.
  • Y. Li, H. Zhang, Z. Huang, E. Bilotti, and T. Peijs, Graphite nanoplatelet modified epoxy resin for carbon fibre reinforced plastics with enhanced properties, Journal of Nanomaterials, 2017, 2017. https://doi.org/10.1155/2017/5194872.
  • J. Naveen, M. Jawaid, E. S. Zainudin, M. Thariq Hameed Sultan, and R. Yahaya, Improved mechanical and moisture-resistant properties of woven hybrid epoxy composites by graphene nanoplatelets (GNP), Materials, 12 (8), 1249, 2019. https://doi.org/ 10.3390/ma12081249.
  • C.-L. Chiang, H.-Y. Chou, and M.-Y. Shen, Effect of environmental aging on mechanical properties of graphene nanoplatelet/nanocarbon aerogel hybrid-reinforced epoxy/carbon fiber composite laminates, Composites Part A: Applied Science and Manufacturing, 2020. https://doi.org/10.1016/ j.compositesa.2019.105718.
  • H. Khosravi and R. Eslami-Farsani, Enhanced mechanical properties of unidirectional basalt fiber/epoxy composites using silane-modified Na+-montmorillonite nanoclay, Polymer Testing, 55, 135-142, 2016 https://doi.org/10.1016/j.polymertesting. 2016.08.011.
  • B. Wei, H. Cao, and S. Song, Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater, Corrosion Science, 53 (1), 426-31, 2011. https://doi.org/10.1016/j.corsci. 2010.09.053.
  • X. Wang, X. Zhao, and Z. Wu, Fatigue degradation and life prediction of basalt fiber-reinforced polymer composites after saltwater corrosion, Materials & Design, 163, 107529, 2019. https://doi.org/10.1016/ j.matdes.2018.12.001.
  • E. F. Sukur and G. Onal, Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance, Wear, 460, 203481, 2020. https://doi.org/10.1016/j.wear.2020. 203481.
  • H. Ulus, H. B. Kaybal, V. Eskizeybek, and A. Avcı, Halloysite Nanotube Reinforcement Endows Ameliorated Fracture Resistance of Seawater Aged Basalt/Epoxy Composites, Journal of Composite Materials, vol. Accepted paper, 2020. https://doi.org/ 10.1177/0021998320902821.
  • M. K. Hossain, M. M. R. Chowdhury, M. Hosur, S. Jeelani, and N. W. Bolden, Enhanced Properties of Epoxy Composite Reinforced With Amino-Functionalized Graphene Nanoplatelets, in ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 51483, 2015. https://doi.org/10.1115/ IMECE2015-51483 .
  • M. K. Hossain, M. M. R. Chowdhury, M. Hosur, S. Jeelani, and N. W. Bolden, Enhanced Properties of Epoxy Composite Reinforced With Amino-Functionalized Graphene Nanoplatelets, in ASME 2015 International Mechanical Engineering Congress and Exposition, 2015: American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/ IMECE2015-51483 .
  • J. Naveen, M. Jawaid, E. Zainudin, M. T. Sultan, and R. Yahaya, Improved Interlaminar Shear Behaviour of a New Hybrid Kevlar/Cocos Nucifera Sheath Composites with Graphene Nanoplatelets Modified Epoxy Matrix, Fibers and Polymers, 20 (8), 1749-53, 2019. https://doi.org/10.1007/s12221-019-3127-z.
  • U. R. Hashim and A. Jumahat, Improved tensile and fracture toughness properties of graphene nanoplatelets filled epoxy polymer via solvent compounding shear milling method, Materials Research Express, 6 (2), 025303, 2018. https://doi.org/10.1088/20531591/ aaeaf0.
  • Z. Jia, X. Feng, and Y. Zou, An investigation on mode II fracture toughness enhancement of epoxy adhesive using graphene nanoplatelets, Composites Part B: Engineering, 155, 452-56, 2018. https://doi.org/ 10.1016/j.compositesb.2018.09.094.
  • M. Bakir et al., Effects of environmental aging on physical properties of aromatic thermosetting copolyester matrix neat and nanocomposite foams, Polymer Degradation and Stability, 147, 49-56, 2018. https://doi.org/10.1016/j.polymdegradstab.2017.11.009.
  • X. F. Sánchez-Romate, P. Terán, S. González-Prolongo, M. Sánchez, and A. Ureña, Hydrothermal ageing on self-sensing bonded joints with novel carbon nanomaterial reinforced adhesive films, Polymer Degradation and Stability, 109170, 2020. https://doi.org/10.1016/j.polymdegradstab.2020.109170.
  • S. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, and A. Ureña, Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins, European Polymer Journal, 61, 206-14, 2014. https://doi.org/10.1016/ j.eurpolymj.2014.09.022.
  • M. Jacob, B. Francis, S. Thomas, and K. Varughese, Dynamical mechanical analysis of sisal/oil palm hybrid fiber‐reinforced natural rubber composites, Polymer Composites, 27 (6), 671-80, 2006. https://doi.org/ 10.1002/pc.20250.
  • D. Pedrazzoli, A. Pegoretti, and K. Kalaitzidou, Synergistic effect of exfoliated graphite nanoplatelets and short glass fiber on the mechanical and interfacial properties of epoxy composites, Composites Science and Technology, 98, 15-21, 2014. https://doi.org/ 10.1016/j.compscitech.2014.04.019.
  • H. Alamri and I. M. Low, Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites, Materials & Design, 42, 214-22, 2012. https://doi.org/10.1016/j.matdes.2012. 05.060.
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering, Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Hasan Ulus 0000-0001-8591-8993

Publication Date January 15, 2021
Submission Date September 6, 2020
Acceptance Date December 4, 2020
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Ulus, H. (2021). The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 412-419. https://doi.org/10.28948/ngumuh.791161
AMA Ulus H. The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. NOHU J. Eng. Sci. January 2021;10(1):412-419. doi:10.28948/ngumuh.791161
Chicago Ulus, Hasan. “The Impact of Seawater Aging on basalt/graphene Nanoplatelet-Epoxy Composites: Performance Evaluating by Dynamic Mechanical Analysis (DMA) and Short Beam Shear (sbs) Tests”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 1 (January 2021): 412-19. https://doi.org/10.28948/ngumuh.791161.
EndNote Ulus H (January 1, 2021) The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 412–419.
IEEE H. Ulus, “The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests”, NOHU J. Eng. Sci., vol. 10, no. 1, pp. 412–419, 2021, doi: 10.28948/ngumuh.791161.
ISNAD Ulus, Hasan. “The Impact of Seawater Aging on basalt/graphene Nanoplatelet-Epoxy Composites: Performance Evaluating by Dynamic Mechanical Analysis (DMA) and Short Beam Shear (sbs) Tests”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (January 2021), 412-419. https://doi.org/10.28948/ngumuh.791161.
JAMA Ulus H. The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. NOHU J. Eng. Sci. 2021;10:412–419.
MLA Ulus, Hasan. “The Impact of Seawater Aging on basalt/graphene Nanoplatelet-Epoxy Composites: Performance Evaluating by Dynamic Mechanical Analysis (DMA) and Short Beam Shear (sbs) Tests”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 1, 2021, pp. 412-9, doi:10.28948/ngumuh.791161.
Vancouver Ulus H. The impact of seawater aging on basalt/graphene nanoplatelet-epoxy composites: performance evaluating by Dynamic Mechanical Analysis (DMA) and short beam shear (sbs) tests. NOHU J. Eng. Sci. 2021;10(1):412-9.

download