Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?

Yıl 2021, Cilt: 10 Sayı: 1, 404 - 411, 15.01.2021
https://doi.org/10.28948/ngumuh.819048

Öz

Hidrojen, hidrojen bazlı enerji sistemine geçişte önemli bir rol oynayacak bir ulaşım yakıtıdır. Doğru enerji kaynağı ile birleştirildiğinde, hidrojen enerji sistemi, herhangi bir ulaşım sektörünün en yüksek potansiyel verimliliğine ve en düşük potansiyel emisyonuna sahiptir. Bu yazının amacı, son yirmi yıldaki bazı ulaşım teknolojisi araştırma ve geliştirme çalışmalarını vurgulamaktır. Bu mevcut çabalar çeşitli bölümlerin iyileştirilmesine ayrılmıştır: motivasyon faktörü, çok yönlülük, kullanım verimliliği, güvenlik ve kirlilik azaltma. Yakıt hücresi son kullanımı da dahil olmak üzere tüm hidrojen tedarik zincirinin çevresel ve ekonomik değerlendirmeleri dünyanın dört bir yanındaki araştırmacılar tarafından gerçekleştirilmektedir. Analizler, hidrojen enerji sisteminin muhtemelen hem ekonomik olarak rekabetçi hem de çevre dostu olacağını gösteriyor. Nitekim, ulaşım sektörünün hidrojen yakıtı kullanımına geçişi, kirliliğin azaltılmasına yönelik en büyük adımlardan birini temsil edecektir.

Teşekkür

Çalışmaya destek ve katkılarından dolayı Prof. Dr. İbrahim Dinçer’e ve onun doktora talebesi Merve Öztürk’e teşekkürlerimi sunarım.

Kaynakça

  • M. W. Jensen and M. Ross, The ultimate challenge: developing an infrastructure for fuel cell vehicles. environment. Science and Policy for Sustainable Development, 42(7), 10–22, Sep. 2000. https://doi.org/ 10.1080/00139150009605747.
  • H. R. Linden, Alternative pathways to a carbon-emission-free energy system. Bridge-Washington-, 29, 17–24, 1999.
  • A. B. Lovins and B. D. Williams, From Fuel cells to a hydrogen-based economy. Public Utilities Fortnightly, 139(4), 12–22, 2001.
  • B. McNicol, Fuel cells for road transportation purposes — yes or no?. Journal of Power Sources, 100(1–2), 47–59, Nov. 2001, https://doi.org/10.1016/ S0378-7753(01)00882-5.
  • J. M. Ogden, M. M. Steinbugler, and T. G. Kreutz, A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. Journal of Power Sources, 79(2), 143–168, Jun. 1999. https://doi.org/10.1016/S0378-7753(99)00057-9.
  • C. Thomas, Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?. International Journal of Hydrogen Energy, 25(6), 551–567, Jun. 2000. https://doi.org/10.1016/S0360-3199(99)00064-6.
  • C. E. Thomas, Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy, 34(15), 6005–6020, Aug. 2009, https://doi.org/ 10.1016/j.ijhydene.2009.06.003.
  • G. Morrison, J. Stevens, and F. Joseck, Relative economic competitiveness of light-duty battery electric and fuel cell electric vehicles. Transportation Research Part C: Emerging Technologies, 87, 183–196, Feb. 2018, https://doi.org/10.1016/j.trc.2018.01.005.
  • D. L. Greene and S. E. Plotkin, Energy futures for the US transport sector. Energy Policy, 29(14), 1255–1270, Nov. 2001. https://doi.org/10.1016/S0301-4215(01) 00071-4.
  • Interlaboratory Working Group, Scenarios for a clean energy future - efficient and clean energy technologies, 2000. http://www.ornl.gov/sci/eere/cef/ Accessed: Oct. 27, 2020.
  • R. V. V. Petrescu, A. Machín, K. Fontánez, J. C. Arango, F. M. Márquez, and F. I. T. Petrescu, Hydrogen for aircraft power and propulsion. International Journal of Hydrogen Energy, 45(41), 20740–20764, Aug. 2020, https://doi.org/ 10.1016/ j.ijhydene.2020.05.253.
  • Y. Bicer and I. Dincer, Life cycle evaluation of hydrogen and other potential fuels for aircrafts. International Journal of Hydrogen Energy, 42(16), 10722–10738, Apr. 2017, https://doi.org/ 10.1016/j.ijhydene.2016.12.119.
  • A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renewable and Sustainable Energy Reviews, 106, 31–40, May 2019, https://doi.org/ 10.1016/ j.rser.2019.02.022.
  • F. W. Armstrong, J. E. Allen, and R. M. Denning, Fuel-related issues concerning the future of aviation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 211, 1, 1–11, 1997, https://doi.org/10.1243/ 0954410971532451.
  • A. Contreras, Hydrogen as aviation fuel: A comparison with hydrocarbon fuels. International Journal of Hydrogen Energy, 22(10–11), 1053–1060, Oct. 1997, https://doi.org/10.1016/S0360-3199(97)00008-6.
  • L. W. Jones, Liquid hydrogen as a fuel for the future, Science, 174(4007), 367–370, Oct. 1971, https:// doi.org/10.1126/science.174.4007.367.
  • D. Victor, Liquid hydrogen aircraft and the greenhouse effect. International Journal of Hydrogen Energy, 15(5), 357–367, 1990, https://doi.org/10.1016/ 0360-3199(90)90186-3.
  • D.-Y. Lee, A. Elgowainy, A. Kotz, R. Vijayagopal, and J. Marcinkoski, Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. Journal of Power Sources, 393, 217–229, Jul. 2018, https://doi.org/10.1016/ j.jpowsour.2018.05.012.
  • G. D. Berry and A. D. Lamont, Carbonless transportation and energy storage in future energy systems, Innovative Strategies for CO2 Stabilization, Technical Report UCRL-ID-142084, 2001. https://doi.org/10.2172/792733
  • E. M. Dickson, J. W. Ryan, and M. H. Smulyan, Hydrogen economy. A preliminary technology assessment, Technical Report NP-20932, 1976.
  • M. I. Khan, T. Yasmin, and A. Shakoor, Technical overview of compressed natural gas (CNG) as a transportation fuel. Renewable and Sustainable Energy Reviews, 51, 785–797, Nov. 2015, https://doi.org/ 10.1016/j.rser.2015.06.053.
  • S. J. Nadis, J. J. MacKenzie, and L. Ost, Car trouble. Boston: Beacon Press, Boston, 1993.
  • J. S. Cannon, Harnessing hydrogen: The key to sustainable transportation. Inform, 1995.
  • S. Begley and M. Hager, Running cars on plain H2O., Newsweek, 124(26), 108–109, 1994.
  • M. J. Riezenman, Engineering the EV future. IEEE Spectr., 35, 11, 18–20, Nov. 1998, https://doi.org/ 10.1109/6.730515.
  • Z. J. B. Plater, R. H. Abrams, R. L. Graham, L. Heinzerling, D. A. Wirth, and N. D. Hall, Environmental law and policy: nature, law, and society, Fifth edition. New York: Wolters Kluwer, New York, 2016.
  • A. Bain and W. D. Van Vorst, The Hindenburg tragedy revisited: The fatal flaw found. International Journal of Hydrogen Energy, 24(5), 399–403, 1999.
  • R. Edwards, A tank of the cold stuff, New Scientist (London), 152, 2057, 41–43, Nov. 1996.
  • R. Moradi and K. M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23), 12254–12269, May 2019, https://doi.org/10.1016/j.ijhydene. 2019.03.041.
  • Energy Sector Management Assistance Program, Green Hydrogen in Developing Countries. World Bank, 2020.
  • T. Nejat Veziroglu, Quarter century of hydrogen movement 1974–2000. International Journal of Hydrogen Energy, 25(12), 1143–1150, Dec. 2000, https://doi.org/10.1016/S0360-3199(00)00038-0.
  • Fast Facts, Energy Independence Now. https://einow.org/talking-points Accessed: Oct. 27, 2020.
  • T. N. Veziroglu, 21st Centurys Energy: Hydrogen Energy System, in Assessment of Hydrogen Energy for Sustainable Development, J. W. Sheffield and Ç. Sheffield, Eds. Dordrecht: Springer Netherlands, 2007, 9–31.
  • D. Cecere, E. Giacomazzi, and A. Ingenito, A review on hydrogen industrial aerospace applications. International Journal of Hydrogen Energy, 39(20), 10731–10747, Jul. 2014, https://doi.org/ 10.1016/ j.ijhydene.2014.04.126.
  • J. Van Mierlo, G. Maggetto, and Ph. Lataire, Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management, 47(17), 2748–2760, Oct. 2006, https://doi.org/10.1016 /j.enconman .2006.02.004.
  • S. T. Thompson et al., Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook. Journal of Power Sources, 399, 304–313, Sep. 2018, https://doi.org/10.1016/j.jpowsour.2018.07.100.
  • R. Choudhury et al., GM Well-to-wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems-A European study, Ottobrunn, September, 2002.
  • T. N. Veziroglu, Environmental Problems And Solutions, CRC Press, Florida, USA, 1990. [39] H. F. Coward and G. W. Jones, Limits of flammability of gases and vapors. [Tables and graphs for organic and inorganic materials and mixtures; bibliography; indexes], 1952, https://doi.org/10.2172/7355338.
  • T. Tanaka, T. Azuma, J. Evans, P. Cronin, D. Johnson, and R. Cleaver, Experimental study on hydrogen explosions in a full-scale hydrogen filling station model. International Journal of Hydrogen Energy, 32(13), 2162–2170, Sep. 2007, https://doi.org/ 10.1016/j.ijhydene.2007.04.019.
  • F. Markert, S. Nielsen, J. Paulsen, and V. Andersen, Safety aspects of future infrastructure scenarios with hydrogen refuelling stations. International Journal of Hydrogen Energy, 32(13), 2227–2234, Sep. 2007, https://doi.org/10.1016/j.ijhydene.2007.04.011.
  • M. Hirayama, H. Shinozaki, N. Kasai, and T. Otaki, Comparative risk study of hydrogen and gasoline dispensers for vehicles. International Journal of Hydrogen Energy, 43(27), 12584–12594, Jul. 2018, https://doi.org/10.1016/j.ijhydene. 2018.05.003.
  • E. Gallego et al., An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel. International Journal of Hydrogen Energy, 32(13), 2235–2245, Sep. 2007, https://doi.org/10.1016/j.ijhydene. 2007.04.009.
  • J. Finegold and W. D. Van Vorst, Crash test of a liquid hydrogen automobile, Corpus ID: 109295284 ,1976.

Why to select hydrogen as a potential transportation fuel?

Yıl 2021, Cilt: 10 Sayı: 1, 404 - 411, 15.01.2021
https://doi.org/10.28948/ngumuh.819048

Öz

Hydrogen is a transportation fuel that will play a major role in the transition toward a hydrogen-based energy system. When combined with the right source of energy, the hydrogen energy system has the highest potential efficiencies and lowest potential emissions of any transportation sector. The aim of this paper is to highlight some of the transportation technology research and development work from the past twenty years. These current efforts are divided into the improvement of several parts: motivity factor, versatility, utilization efficiency, safety and pollution reduction. Environmental and economic assessments of the entire hydrogen supply chain, including fuel cell end-use, are being carried out by researchers around the world. Analyses show that the hydrogen energy system will likely be both economically competitive and environmentally friendly. Indeed, the transition of the transportation sector to the use of hydrogen fuel will represent one of the biggest steps toward pollution reduction.

Kaynakça

  • M. W. Jensen and M. Ross, The ultimate challenge: developing an infrastructure for fuel cell vehicles. environment. Science and Policy for Sustainable Development, 42(7), 10–22, Sep. 2000. https://doi.org/ 10.1080/00139150009605747.
  • H. R. Linden, Alternative pathways to a carbon-emission-free energy system. Bridge-Washington-, 29, 17–24, 1999.
  • A. B. Lovins and B. D. Williams, From Fuel cells to a hydrogen-based economy. Public Utilities Fortnightly, 139(4), 12–22, 2001.
  • B. McNicol, Fuel cells for road transportation purposes — yes or no?. Journal of Power Sources, 100(1–2), 47–59, Nov. 2001, https://doi.org/10.1016/ S0378-7753(01)00882-5.
  • J. M. Ogden, M. M. Steinbugler, and T. G. Kreutz, A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. Journal of Power Sources, 79(2), 143–168, Jun. 1999. https://doi.org/10.1016/S0378-7753(99)00057-9.
  • C. Thomas, Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?. International Journal of Hydrogen Energy, 25(6), 551–567, Jun. 2000. https://doi.org/10.1016/S0360-3199(99)00064-6.
  • C. E. Thomas, Fuel cell and battery electric vehicles compared. International Journal of Hydrogen Energy, 34(15), 6005–6020, Aug. 2009, https://doi.org/ 10.1016/j.ijhydene.2009.06.003.
  • G. Morrison, J. Stevens, and F. Joseck, Relative economic competitiveness of light-duty battery electric and fuel cell electric vehicles. Transportation Research Part C: Emerging Technologies, 87, 183–196, Feb. 2018, https://doi.org/10.1016/j.trc.2018.01.005.
  • D. L. Greene and S. E. Plotkin, Energy futures for the US transport sector. Energy Policy, 29(14), 1255–1270, Nov. 2001. https://doi.org/10.1016/S0301-4215(01) 00071-4.
  • Interlaboratory Working Group, Scenarios for a clean energy future - efficient and clean energy technologies, 2000. http://www.ornl.gov/sci/eere/cef/ Accessed: Oct. 27, 2020.
  • R. V. V. Petrescu, A. Machín, K. Fontánez, J. C. Arango, F. M. Márquez, and F. I. T. Petrescu, Hydrogen for aircraft power and propulsion. International Journal of Hydrogen Energy, 45(41), 20740–20764, Aug. 2020, https://doi.org/ 10.1016/ j.ijhydene.2020.05.253.
  • Y. Bicer and I. Dincer, Life cycle evaluation of hydrogen and other potential fuels for aircrafts. International Journal of Hydrogen Energy, 42(16), 10722–10738, Apr. 2017, https://doi.org/ 10.1016/j.ijhydene.2016.12.119.
  • A. Baroutaji, T. Wilberforce, M. Ramadan, and A. G. Olabi, Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors. Renewable and Sustainable Energy Reviews, 106, 31–40, May 2019, https://doi.org/ 10.1016/ j.rser.2019.02.022.
  • F. W. Armstrong, J. E. Allen, and R. M. Denning, Fuel-related issues concerning the future of aviation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 211, 1, 1–11, 1997, https://doi.org/10.1243/ 0954410971532451.
  • A. Contreras, Hydrogen as aviation fuel: A comparison with hydrocarbon fuels. International Journal of Hydrogen Energy, 22(10–11), 1053–1060, Oct. 1997, https://doi.org/10.1016/S0360-3199(97)00008-6.
  • L. W. Jones, Liquid hydrogen as a fuel for the future, Science, 174(4007), 367–370, Oct. 1971, https:// doi.org/10.1126/science.174.4007.367.
  • D. Victor, Liquid hydrogen aircraft and the greenhouse effect. International Journal of Hydrogen Energy, 15(5), 357–367, 1990, https://doi.org/10.1016/ 0360-3199(90)90186-3.
  • D.-Y. Lee, A. Elgowainy, A. Kotz, R. Vijayagopal, and J. Marcinkoski, Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. Journal of Power Sources, 393, 217–229, Jul. 2018, https://doi.org/10.1016/ j.jpowsour.2018.05.012.
  • G. D. Berry and A. D. Lamont, Carbonless transportation and energy storage in future energy systems, Innovative Strategies for CO2 Stabilization, Technical Report UCRL-ID-142084, 2001. https://doi.org/10.2172/792733
  • E. M. Dickson, J. W. Ryan, and M. H. Smulyan, Hydrogen economy. A preliminary technology assessment, Technical Report NP-20932, 1976.
  • M. I. Khan, T. Yasmin, and A. Shakoor, Technical overview of compressed natural gas (CNG) as a transportation fuel. Renewable and Sustainable Energy Reviews, 51, 785–797, Nov. 2015, https://doi.org/ 10.1016/j.rser.2015.06.053.
  • S. J. Nadis, J. J. MacKenzie, and L. Ost, Car trouble. Boston: Beacon Press, Boston, 1993.
  • J. S. Cannon, Harnessing hydrogen: The key to sustainable transportation. Inform, 1995.
  • S. Begley and M. Hager, Running cars on plain H2O., Newsweek, 124(26), 108–109, 1994.
  • M. J. Riezenman, Engineering the EV future. IEEE Spectr., 35, 11, 18–20, Nov. 1998, https://doi.org/ 10.1109/6.730515.
  • Z. J. B. Plater, R. H. Abrams, R. L. Graham, L. Heinzerling, D. A. Wirth, and N. D. Hall, Environmental law and policy: nature, law, and society, Fifth edition. New York: Wolters Kluwer, New York, 2016.
  • A. Bain and W. D. Van Vorst, The Hindenburg tragedy revisited: The fatal flaw found. International Journal of Hydrogen Energy, 24(5), 399–403, 1999.
  • R. Edwards, A tank of the cold stuff, New Scientist (London), 152, 2057, 41–43, Nov. 1996.
  • R. Moradi and K. M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. International Journal of Hydrogen Energy, 44(23), 12254–12269, May 2019, https://doi.org/10.1016/j.ijhydene. 2019.03.041.
  • Energy Sector Management Assistance Program, Green Hydrogen in Developing Countries. World Bank, 2020.
  • T. Nejat Veziroglu, Quarter century of hydrogen movement 1974–2000. International Journal of Hydrogen Energy, 25(12), 1143–1150, Dec. 2000, https://doi.org/10.1016/S0360-3199(00)00038-0.
  • Fast Facts, Energy Independence Now. https://einow.org/talking-points Accessed: Oct. 27, 2020.
  • T. N. Veziroglu, 21st Centurys Energy: Hydrogen Energy System, in Assessment of Hydrogen Energy for Sustainable Development, J. W. Sheffield and Ç. Sheffield, Eds. Dordrecht: Springer Netherlands, 2007, 9–31.
  • D. Cecere, E. Giacomazzi, and A. Ingenito, A review on hydrogen industrial aerospace applications. International Journal of Hydrogen Energy, 39(20), 10731–10747, Jul. 2014, https://doi.org/ 10.1016/ j.ijhydene.2014.04.126.
  • J. Van Mierlo, G. Maggetto, and Ph. Lataire, Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles. Energy Conversion and Management, 47(17), 2748–2760, Oct. 2006, https://doi.org/10.1016 /j.enconman .2006.02.004.
  • S. T. Thompson et al., Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook. Journal of Power Sources, 399, 304–313, Sep. 2018, https://doi.org/10.1016/j.jpowsour.2018.07.100.
  • R. Choudhury et al., GM Well-to-wheel analysis of energy use and greenhouse gas emissions of advanced fuel/vehicle systems-A European study, Ottobrunn, September, 2002.
  • T. N. Veziroglu, Environmental Problems And Solutions, CRC Press, Florida, USA, 1990. [39] H. F. Coward and G. W. Jones, Limits of flammability of gases and vapors. [Tables and graphs for organic and inorganic materials and mixtures; bibliography; indexes], 1952, https://doi.org/10.2172/7355338.
  • T. Tanaka, T. Azuma, J. Evans, P. Cronin, D. Johnson, and R. Cleaver, Experimental study on hydrogen explosions in a full-scale hydrogen filling station model. International Journal of Hydrogen Energy, 32(13), 2162–2170, Sep. 2007, https://doi.org/ 10.1016/j.ijhydene.2007.04.019.
  • F. Markert, S. Nielsen, J. Paulsen, and V. Andersen, Safety aspects of future infrastructure scenarios with hydrogen refuelling stations. International Journal of Hydrogen Energy, 32(13), 2227–2234, Sep. 2007, https://doi.org/10.1016/j.ijhydene.2007.04.011.
  • M. Hirayama, H. Shinozaki, N. Kasai, and T. Otaki, Comparative risk study of hydrogen and gasoline dispensers for vehicles. International Journal of Hydrogen Energy, 43(27), 12584–12594, Jul. 2018, https://doi.org/10.1016/j.ijhydene. 2018.05.003.
  • E. Gallego et al., An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel. International Journal of Hydrogen Energy, 32(13), 2235–2245, Sep. 2007, https://doi.org/10.1016/j.ijhydene. 2007.04.009.
  • J. Finegold and W. D. Van Vorst, Crash test of a liquid hydrogen automobile, Corpus ID: 109295284 ,1976.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makine Mühendisliği
Yazarlar

Ayfer Veziroğlu 0000-0001-7635-9739

Yayımlanma Tarihi 15 Ocak 2021
Gönderilme Tarihi 31 Ekim 2020
Kabul Tarihi 4 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 1

Kaynak Göster

APA Veziroğlu, A. (2021). Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(1), 404-411. https://doi.org/10.28948/ngumuh.819048
AMA Veziroğlu A. Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?. NÖHÜ Müh. Bilim. Derg. Ocak 2021;10(1):404-411. doi:10.28948/ngumuh.819048
Chicago Veziroğlu, Ayfer. “Hidrojen Neden Potansiyel Bir ulaşım yakıtı Olarak seçilmelidir?”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 1 (Ocak 2021): 404-11. https://doi.org/10.28948/ngumuh.819048.
EndNote Veziroğlu A (01 Ocak 2021) Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 1 404–411.
IEEE A. Veziroğlu, “Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?”, NÖHÜ Müh. Bilim. Derg., c. 10, sy. 1, ss. 404–411, 2021, doi: 10.28948/ngumuh.819048.
ISNAD Veziroğlu, Ayfer. “Hidrojen Neden Potansiyel Bir ulaşım yakıtı Olarak seçilmelidir?”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/1 (Ocak 2021), 404-411. https://doi.org/10.28948/ngumuh.819048.
JAMA Veziroğlu A. Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?. NÖHÜ Müh. Bilim. Derg. 2021;10:404–411.
MLA Veziroğlu, Ayfer. “Hidrojen Neden Potansiyel Bir ulaşım yakıtı Olarak seçilmelidir?”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 1, 2021, ss. 404-11, doi:10.28948/ngumuh.819048.
Vancouver Veziroğlu A. Hidrojen neden potansiyel bir ulaşım yakıtı olarak seçilmelidir?. NÖHÜ Müh. Bilim. Derg. 2021;10(1):404-11.

download