Research Article
BibTex RIS Cite

Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması

Year 2021, Volume: 10 Issue: 2, 487 - 494, 27.07.2021
https://doi.org/10.28948/ngumuh.749438

Abstract

Bu çalışmada Acid blue 264 azo boyasının Fenton ve ultrases-Fenton yöntemleri ile renk ve kimyasal oksijen ihtiyacı (KOİ) giderimi araştırılmıştır. Bu amaçla, başlangıç pH’sı, H2O2 konsantrasyonu, Fe2+ konsantrasyonu ve reaksiyon süresi gibi parametrelerin etkisi karşılaştırılmalı olarak incelenmiştir. Fenton prosesinde en yüksek renk ve KOİ giderimi pH = 3.5, [Fe2+] = 180 mg/L, [H2O2] = 125 mg/L ve reaksiyon süresi 75 dakika koşullarında sırasıyla %88.5 ve %76 olmuştur. Ultrases- Fenton prosesinde 20 kHz ultrases frekansta pH = 3.5, [Fe2+] = 180 mg/L, [H2O2] = 100 mg/L ve reaksiyon süresi 45 dakika olduğunda en iyi renk ve KOİ giderimi sırası ile %96.6 ve %88.5 olarak elde edilmiştir. Sonuçlar ultrases-Fenton işleminde azalan kimyasal tüketimi ile renk ve KOİ gideriminin arttığını göstermiştir. Ayrıca Fenton prosesine kıyasla reaksiyon süresi de kısalmıştır. Elde edilen bulgulara göre ultrases Fenton prosesi daha kısa reaksiyon süresi ve daha az kimyasal sarfiyatı ile Fenton yöntemine göre daha ekonomik şekilde Acid Blue 264 azo boyasının gideriminde alternatif bir yöntem olarak kullanılabilir.

Supporting Institution

Mersin Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi Başkanlığı

Project Number

BAP-FBE ÇMB (DT)2013-4

Thanks

BAP-FBE ÇMB (DT)2013-4 protokol numaralı proje ile sağladıkları maddi kaynaktan dolayı Mersin Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi Başkanlığı’na teşekkür ederiz.

References

  • J. Khan, M. Sayed, A. Fayaz and H.M. Khan, Removal of acid yellow 17 dye by Fenton oxidation process. Zeitschrift Für Physikalische Chemie, 232, 507-525, 2018. https://doi.org/10.1515/zpch-2017-1072.
  • Y. Anjaneyulu, N.S. Chary and D.S.S. Raj, Decolourization of industrial effluents–available methods and emerging technologies–a review. Reviews in Environmental Science and Bio/Technology, 4, 245–273, 2005. https://doi.org/ 10.1007/s11157-005-1246-z.
  • C.-H. Weng, Y.-T. Lin and H.-M. Yuan, Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Separation and Purification Technology, 117, 75–82, 2013. https://doi.org/10.1016/j.seppur.2013.03.047.
  • L. Aljerf, High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. Journal of Environmental Management, 225, 120–132, 2018. https://doi.org/10.1016/j.jenvman.2018.07.048.
  • S.-F. Kang, C.-H. Liao and S.-T. Po, Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere, 41, 1287–1294, 2000. https://doi.org/10.1016/S0045-6535(99)00524-X.
  • Ö. Demir, Synthesis of Fe3O4 Magnetic Nanoparticles and Investigation of Removal Capacity. Journal of the Chemical Society of Pakistan, 40, 111-122, 2018.
  • R. Gong, Y. Jin, F. Chen, J. Chen and Z. Liu, Enhanced malachite green removal from aqueous solution by citric acid modified rice straw. Journal of Hazardous Materials, 137, 865–870, 2006. https://doi.org/10.1016/j.jhazmat.2006.03.010.
  • E.A. Clarke and R. Anliker, The Handbook of Environmental- Anthropogenic Compounds: Organic dyes and pigments, . Springer, Berlin, 1980.
  • R.O. Yusuff and J.A. Sonibare, Characterization of textile industries’ effluents in Kaduna, Nigeria and pollution implications. Global Nest: The International Journal, 6, 3,, 212–221, 2004.
  • S. Şahinkaya, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry, 19, 601–605, 2013. https://doi.org/10.1016/j.jiec.2012.09.023.
  • G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085, 2006. https://doi.org/10.1016/j.biortech. 2005.05.001.
  • N. Thinakaran, P. Baskaralingam, K. V Thiruvengada Ravi, P. Panneerselvam and S. Sivanesan, Adsorptive removal of acid blue 15: equilibrium and kinetic study. CLEAN–Soil, Air, Water, 36, 798–804, 2008. https://doi.org/10.1002/clen.200800027.
  • S.-F. Kang, C.-H. Liao and M.-C. Chen, Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46, 923–928, 2002. https://doi.org/10.1016/S0045-6535(01)00159-X.
  • M. Muthukumar and N. Selvakumar, Decoloration of acid dye effluent with ozone: effect of pH, salt concentration and treatment time. Coloration Technology, 121, 7–12, 2005. https://doi.org/10.1111/ j.1478-4408.2005.tb00240.x.
  • C. Özdemir, M.K. Öden, S. Şahinkaya and E. Kalipçi, Color removal from synthetic textile wastewater by sono‐fenton process. Clean–Soil, Air, Water, 39, 60–67, 2011. https://doi.org/10.1002/clen.201000263.
  • H.-J. Hsing, P.-C. Chiang, E.-E. Chang and M.-Y. Chen, The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. Journal of Hazardous Materials, 141, 8–16, 2007. https://doi.org/10.1016/j.jhazmat.2006.05.122.
  • S. Meriç, D. Kaptan and T. Ölmez, Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54, 435–441, 2004. https://doi.org/10.1016 /j.chemosphere.2003.08.010.
  • N. Ertugay and F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158–S1163, 2017. https://doi.org/ 10.1016/j.arabjc.2013.02.009.
  • E.J. Rosenfeldt, P.J. Chen, S. Kullman and K.G. Linden, Destruction of estrogenic activity in water using UV advanced oxidation. Science of the Total Environment, 377, 105–113, 2007. https://doi.org/ 10.1016/j.scitotenv.2007.01.096.
  • M. Mohajerani, M. Mehrvar and F. Ein-Mozaffari, An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. International Journal of Engineering, 3, 120–146, 2009.
  • A. Mehrdad and R. Hashemzadeh, Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrasonics Sonochemistry, 17, 168–172, 2010. https://doi.org/ 10.1016/j.ultsonch.2009.07.003.
  • Y.-S. Ma, C.-F. Sung and J.-G. Lin, Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: effect of system parameters and kinetic study. Journal of Hazardous Materials, 178, 320–325, 2010. https://doi.org/10.1016/j.jhazmat. 2010.01.081.
  • N. Geng, W. Chen, H. Xu, M. Ding, T. Lin, Q. Wu and L. Zhang, Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism. Ultrasonics Sonochemistry, 72, 105411, 2021. https://doi.org/10.1016/j.ultsonch.2020.105411.
  • Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng and L. Zhao, Ultrasound-assisted catalytic degradation of methyl orange with Fe3O4/polyaniline in near neutral solution. Industrial&Engineering Chemistry Research, 54, 2279–2289, 2015. https://doi.org/10.1021/ ie504242k.
  • N. Pokhrel, P.K. Vabbina and N. Pala, Sonochemistry: science and engineering. Ultrasonics Sonochemistry, 29, 104–128, 2016. https://doi.org/10.1016/ j.ultsonch.2015.07.023.
  • Z. Guo, R. Feng, J. Li, Z. Zheng and Y. Zheng, Degradation of 2, 4-dinitrophenol by combining sonolysis and different additives. Journal of Hazardous Materials, 158, 164–169, 2008. https://doi.org/10.1016/j.jhazmat.2008.01.056.
  • S. Fındık and G. Gündüz, Sonolytic degradation of acetic acid in aqueous solutions. Ultrasonics Sonochemistry, 14, 157–162, 2007. https://doi.org/10.1016/j.ultsonch.2006.03.009.
  • A.H. Alwash, A.Z. Abdullah and N. Ismail, Investigation on the catalytic behavior of Fe loaded on encapsulated titanium for sonocatalytic degradation of amaranth: characterization and reusability study. Modern Research in Catalysis, 2 (3), 2013. https://doi.org/10.4236/mrc.2013.23015.
  • Y.L. Pang, A.Z. Abdullah and S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination, 277, 1–14, 2011. https://doi.org/10.1016/j.desal.2011.04.049.
  • A.J. Sisi, M. Fathinia, A. Khataee and Y. Orooji, Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018, 2020. https://doi.org/10.1016/j.molliq.2020.113018.
  • T.S. Rad, Z. Ansarian, R.D.C. Soltani, A. Khataee, Y. Orooji and F. Vafaei, Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination. Journal of Hazardous Materials, 399, 123062, 2020. https://doi.org/10.1016/j.jhazmat.2020.123062.
  • L. V Prakash, A. Gopinath, R. Gandhimathi, S. Velmathi, S.T. Ramesh and P. V Nidheesh, Ultrasound aided heterogeneous Fenton degradation of Acid Blue 15 over green synthesized magnetite nanoparticles. Seperation and Purification Technology, 266, 118230, 2021. https://doi.org/ 10.1016/j.seppur.2020.118230.
  • M. Dükkancı, M. Vinatoru and T.J. Mason, The sonochemical decolourisation of textile azo dye Orange II: effects of Fenton type reagents and UV light. Ultrasonics Sonochemistry, 21, 846–853, 2024. https://doi.org/10.1016/j.ultsonch.2013.08.020.
  • A. Maroudas, P.K. Pandis, A. Chatzopoulou, L.-R. Davellas, G. Sourkouni and C. Argirusis, Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction, Ultrasonics Sonochemistry, 71, 105367, 2020. https://doi.org/ 10.1016/j.ultsonch.2020.105367.
  • Y. Song, J. Li and H. Chen, Degradation of CI Acid Red 88 aqueous solution by combination of Fenton’s reagent and ultrasound irradiation. Journal of Chemical Technology and Biotechnology,84, 578–583, 2009. https://doi.org/10.1002/jctb.2083.
  • C. Özdemir, M.K. Öden, S. Şahinkaya and D. Güçlü, The sonochemical decolorisation of textile azo dye CI Reactive Orange 127. Coloration Technology, 127, 268–273, 2011. https://doi.org/10.1111/j.1478-4408.2011.00310.x.
  • World Dye Variety, Acid Blue 264, 2021. http://www.worlddyevariety.com/acid-dyes/acid-blue-264.html.
  • S.G. Cetinkaya, M.H. Morcali, S. Akarsu, C.A. Ziba and M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research, 28, 165–170, 2018. https://doi.org/10.1016/j.serj. 2018.02.001.
  • J. Kochany and E. Lipczynska-Kochany, Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—a comparative study. Journal of Hazardous Materials, 166, 248–254, 2009. https://doi.org/10.1016/j.jhazmat. 2008.11.017.
  • P.V. Nidheesh, R. Gandhimathi and S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099–2132, 2013. https://doi.org/10.1007/s11356-012-1385-z.
  • P.B. Patil, S. Raut-Jadhav and A.B. Pandit, Effect of intensifying additives on the degradation of thiamethoxam using ultrasound cavitation. Ultrasonics Sonochemistry, 70, 105310, 2021. https://doi.org/10.1016/j.ultsonch.2020.105310.

Investigation of color and COD removal of Acid Blue 264 azo dye by Fenton and ultrasound-Fenton oxidation methods

Year 2021, Volume: 10 Issue: 2, 487 - 494, 27.07.2021
https://doi.org/10.28948/ngumuh.749438

Abstract

In this study, color and chemical oxygen demand (COD) removal of Acid blue 264 azo dye by Fenton and ultrasound-Fenton methods was investigated. For this purpose, the effects of parameters such as initial pH, H2O2 concentration, Fe2+ concentration and reaction time were studied comparatively. The highest color and COD removal for Fenton process found at the optimum condition of pH = 3.5, [Fe2+] = 180 mg / L, [H2O2] = 125 mg/L and reaction time 75 minutes were 88.5% and 76%, respectively. In the Ultrases-Fenton process, at 20 kHz ultrasound frequency, when pH = 3,5, [Fe2+] = 180 mg/L, [H2O2] = 100 mg/L and reaction time was 45 minutes, the highest color and COD removal was achieved as 96.6% and 88.5%, respectively. The results showed that the color and COD removal increased with reduced chemical consumption in the ultrasound-Fenton process. In addition, the reaction time is shortened compared to the Fenton process. According to the data obtained, the ultrasound Fenton process can be used as an alternative method for the removal of Acid Blue 264 azo dye more economically than Fenton method with its shorter reaction time and less chemical consumption.

Project Number

BAP-FBE ÇMB (DT)2013-4

References

  • J. Khan, M. Sayed, A. Fayaz and H.M. Khan, Removal of acid yellow 17 dye by Fenton oxidation process. Zeitschrift Für Physikalische Chemie, 232, 507-525, 2018. https://doi.org/10.1515/zpch-2017-1072.
  • Y. Anjaneyulu, N.S. Chary and D.S.S. Raj, Decolourization of industrial effluents–available methods and emerging technologies–a review. Reviews in Environmental Science and Bio/Technology, 4, 245–273, 2005. https://doi.org/ 10.1007/s11157-005-1246-z.
  • C.-H. Weng, Y.-T. Lin and H.-M. Yuan, Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Separation and Purification Technology, 117, 75–82, 2013. https://doi.org/10.1016/j.seppur.2013.03.047.
  • L. Aljerf, High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: kinetics and equilibrium study. Journal of Environmental Management, 225, 120–132, 2018. https://doi.org/10.1016/j.jenvman.2018.07.048.
  • S.-F. Kang, C.-H. Liao and S.-T. Po, Decolorization of textile wastewater by photo-Fenton oxidation technology. Chemosphere, 41, 1287–1294, 2000. https://doi.org/10.1016/S0045-6535(99)00524-X.
  • Ö. Demir, Synthesis of Fe3O4 Magnetic Nanoparticles and Investigation of Removal Capacity. Journal of the Chemical Society of Pakistan, 40, 111-122, 2018.
  • R. Gong, Y. Jin, F. Chen, J. Chen and Z. Liu, Enhanced malachite green removal from aqueous solution by citric acid modified rice straw. Journal of Hazardous Materials, 137, 865–870, 2006. https://doi.org/10.1016/j.jhazmat.2006.03.010.
  • E.A. Clarke and R. Anliker, The Handbook of Environmental- Anthropogenic Compounds: Organic dyes and pigments, . Springer, Berlin, 1980.
  • R.O. Yusuff and J.A. Sonibare, Characterization of textile industries’ effluents in Kaduna, Nigeria and pollution implications. Global Nest: The International Journal, 6, 3,, 212–221, 2004.
  • S. Şahinkaya, COD and color removal from synthetic textile wastewater by ultrasound assisted electro-Fenton oxidation process. Journal of Industrial and Engineering Chemistry, 19, 601–605, 2013. https://doi.org/10.1016/j.jiec.2012.09.023.
  • G. Crini, Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97, 1061–1085, 2006. https://doi.org/10.1016/j.biortech. 2005.05.001.
  • N. Thinakaran, P. Baskaralingam, K. V Thiruvengada Ravi, P. Panneerselvam and S. Sivanesan, Adsorptive removal of acid blue 15: equilibrium and kinetic study. CLEAN–Soil, Air, Water, 36, 798–804, 2008. https://doi.org/10.1002/clen.200800027.
  • S.-F. Kang, C.-H. Liao and M.-C. Chen, Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere, 46, 923–928, 2002. https://doi.org/10.1016/S0045-6535(01)00159-X.
  • M. Muthukumar and N. Selvakumar, Decoloration of acid dye effluent with ozone: effect of pH, salt concentration and treatment time. Coloration Technology, 121, 7–12, 2005. https://doi.org/10.1111/ j.1478-4408.2005.tb00240.x.
  • C. Özdemir, M.K. Öden, S. Şahinkaya and E. Kalipçi, Color removal from synthetic textile wastewater by sono‐fenton process. Clean–Soil, Air, Water, 39, 60–67, 2011. https://doi.org/10.1002/clen.201000263.
  • H.-J. Hsing, P.-C. Chiang, E.-E. Chang and M.-Y. Chen, The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study. Journal of Hazardous Materials, 141, 8–16, 2007. https://doi.org/10.1016/j.jhazmat.2006.05.122.
  • S. Meriç, D. Kaptan and T. Ölmez, Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54, 435–441, 2004. https://doi.org/10.1016 /j.chemosphere.2003.08.010.
  • N. Ertugay and F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study. Arabian Journal of Chemistry, 10, S1158–S1163, 2017. https://doi.org/ 10.1016/j.arabjc.2013.02.009.
  • E.J. Rosenfeldt, P.J. Chen, S. Kullman and K.G. Linden, Destruction of estrogenic activity in water using UV advanced oxidation. Science of the Total Environment, 377, 105–113, 2007. https://doi.org/ 10.1016/j.scitotenv.2007.01.096.
  • M. Mohajerani, M. Mehrvar and F. Ein-Mozaffari, An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. International Journal of Engineering, 3, 120–146, 2009.
  • A. Mehrdad and R. Hashemzadeh, Ultrasonic degradation of Rhodamine B in the presence of hydrogen peroxide and some metal oxide. Ultrasonics Sonochemistry, 17, 168–172, 2010. https://doi.org/ 10.1016/j.ultsonch.2009.07.003.
  • Y.-S. Ma, C.-F. Sung and J.-G. Lin, Degradation of carbofuran in aqueous solution by ultrasound and Fenton processes: effect of system parameters and kinetic study. Journal of Hazardous Materials, 178, 320–325, 2010. https://doi.org/10.1016/j.jhazmat. 2010.01.081.
  • N. Geng, W. Chen, H. Xu, M. Ding, T. Lin, Q. Wu and L. Zhang, Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: Efficiency, kinetics and mechanism. Ultrasonics Sonochemistry, 72, 105411, 2021. https://doi.org/10.1016/j.ultsonch.2020.105411.
  • Y. Wang, L. Gai, W. Ma, H. Jiang, X. Peng and L. Zhao, Ultrasound-assisted catalytic degradation of methyl orange with Fe3O4/polyaniline in near neutral solution. Industrial&Engineering Chemistry Research, 54, 2279–2289, 2015. https://doi.org/10.1021/ ie504242k.
  • N. Pokhrel, P.K. Vabbina and N. Pala, Sonochemistry: science and engineering. Ultrasonics Sonochemistry, 29, 104–128, 2016. https://doi.org/10.1016/ j.ultsonch.2015.07.023.
  • Z. Guo, R. Feng, J. Li, Z. Zheng and Y. Zheng, Degradation of 2, 4-dinitrophenol by combining sonolysis and different additives. Journal of Hazardous Materials, 158, 164–169, 2008. https://doi.org/10.1016/j.jhazmat.2008.01.056.
  • S. Fındık and G. Gündüz, Sonolytic degradation of acetic acid in aqueous solutions. Ultrasonics Sonochemistry, 14, 157–162, 2007. https://doi.org/10.1016/j.ultsonch.2006.03.009.
  • A.H. Alwash, A.Z. Abdullah and N. Ismail, Investigation on the catalytic behavior of Fe loaded on encapsulated titanium for sonocatalytic degradation of amaranth: characterization and reusability study. Modern Research in Catalysis, 2 (3), 2013. https://doi.org/10.4236/mrc.2013.23015.
  • Y.L. Pang, A.Z. Abdullah and S. Bhatia, Review on sonochemical methods in the presence of catalysts and chemical additives for treatment of organic pollutants in wastewater. Desalination, 277, 1–14, 2011. https://doi.org/10.1016/j.desal.2011.04.049.
  • A.J. Sisi, M. Fathinia, A. Khataee and Y. Orooji, Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: mechanism and ecotoxicological analysis. Journal of Molecular Liquids, 308, 113018, 2020. https://doi.org/10.1016/j.molliq.2020.113018.
  • T.S. Rad, Z. Ansarian, R.D.C. Soltani, A. Khataee, Y. Orooji and F. Vafaei, Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: influencing factors, antibacterial effects, and intermediate determination. Journal of Hazardous Materials, 399, 123062, 2020. https://doi.org/10.1016/j.jhazmat.2020.123062.
  • L. V Prakash, A. Gopinath, R. Gandhimathi, S. Velmathi, S.T. Ramesh and P. V Nidheesh, Ultrasound aided heterogeneous Fenton degradation of Acid Blue 15 over green synthesized magnetite nanoparticles. Seperation and Purification Technology, 266, 118230, 2021. https://doi.org/ 10.1016/j.seppur.2020.118230.
  • M. Dükkancı, M. Vinatoru and T.J. Mason, The sonochemical decolourisation of textile azo dye Orange II: effects of Fenton type reagents and UV light. Ultrasonics Sonochemistry, 21, 846–853, 2024. https://doi.org/10.1016/j.ultsonch.2013.08.020.
  • A. Maroudas, P.K. Pandis, A. Chatzopoulou, L.-R. Davellas, G. Sourkouni and C. Argirusis, Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction, Ultrasonics Sonochemistry, 71, 105367, 2020. https://doi.org/ 10.1016/j.ultsonch.2020.105367.
  • Y. Song, J. Li and H. Chen, Degradation of CI Acid Red 88 aqueous solution by combination of Fenton’s reagent and ultrasound irradiation. Journal of Chemical Technology and Biotechnology,84, 578–583, 2009. https://doi.org/10.1002/jctb.2083.
  • C. Özdemir, M.K. Öden, S. Şahinkaya and D. Güçlü, The sonochemical decolorisation of textile azo dye CI Reactive Orange 127. Coloration Technology, 127, 268–273, 2011. https://doi.org/10.1111/j.1478-4408.2011.00310.x.
  • World Dye Variety, Acid Blue 264, 2021. http://www.worlddyevariety.com/acid-dyes/acid-blue-264.html.
  • S.G. Cetinkaya, M.H. Morcali, S. Akarsu, C.A. Ziba and M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research, 28, 165–170, 2018. https://doi.org/10.1016/j.serj. 2018.02.001.
  • J. Kochany and E. Lipczynska-Kochany, Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation—a comparative study. Journal of Hazardous Materials, 166, 248–254, 2009. https://doi.org/10.1016/j.jhazmat. 2008.11.017.
  • P.V. Nidheesh, R. Gandhimathi and S.T. Ramesh, Degradation of dyes from aqueous solution by Fenton processes: a review. Environmental Science and Pollution Research, 20, 2099–2132, 2013. https://doi.org/10.1007/s11356-012-1385-z.
  • P.B. Patil, S. Raut-Jadhav and A.B. Pandit, Effect of intensifying additives on the degradation of thiamethoxam using ultrasound cavitation. Ultrasonics Sonochemistry, 70, 105310, 2021. https://doi.org/10.1016/j.ultsonch.2020.105310.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Dilan Toprak 0000-0003-3879-4064

Savaş Sener 0000-0002-8657-9652

Project Number BAP-FBE ÇMB (DT)2013-4
Publication Date July 27, 2021
Submission Date June 10, 2020
Acceptance Date June 8, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Toprak, D., & Sener, S. (2021). Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 487-494. https://doi.org/10.28948/ngumuh.749438
AMA Toprak D, Sener S. Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması. NOHU J. Eng. Sci. July 2021;10(2):487-494. doi:10.28948/ngumuh.749438
Chicago Toprak, Dilan, and Savaş Sener. “Acid Blue 264 Azo boyasının Fenton Ve Ultrases-Fenton Oksidasyon yöntemleri Ile Renk Ve KOİ Gideriminin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 487-94. https://doi.org/10.28948/ngumuh.749438.
EndNote Toprak D, Sener S (July 1, 2021) Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 487–494.
IEEE D. Toprak and S. Sener, “Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması”, NOHU J. Eng. Sci., vol. 10, no. 2, pp. 487–494, 2021, doi: 10.28948/ngumuh.749438.
ISNAD Toprak, Dilan - Sener, Savaş. “Acid Blue 264 Azo boyasının Fenton Ve Ultrases-Fenton Oksidasyon yöntemleri Ile Renk Ve KOİ Gideriminin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 487-494. https://doi.org/10.28948/ngumuh.749438.
JAMA Toprak D, Sener S. Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması. NOHU J. Eng. Sci. 2021;10:487–494.
MLA Toprak, Dilan and Savaş Sener. “Acid Blue 264 Azo boyasının Fenton Ve Ultrases-Fenton Oksidasyon yöntemleri Ile Renk Ve KOİ Gideriminin araştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 487-94, doi:10.28948/ngumuh.749438.
Vancouver Toprak D, Sener S. Acid Blue 264 azo boyasının Fenton ve ultrases-Fenton oksidasyon yöntemleri ile renk ve KOİ gideriminin araştırılması. NOHU J. Eng. Sci. 2021;10(2):487-94.

download