Research Article
BibTex RIS Cite

Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı

Year 2021, Volume: 10 Issue: 2, 535 - 544, 27.07.2021
https://doi.org/10.28948/ngumuh.804951

Abstract

İnsansız Hava Araçları (İHA’lar) video kamera, fotoğraf makinesi, lazer tarama cihazı, vb. araçlar ile donatılmış ve görevlerini uzaktan kumandalı veya otonom olarak icra edebilmektedirler. Hızla gelişmekte olan bilgisayarın veri işleme kapasitesi, sensör ve yarı iletken teknolojileri küçük boyutlu döner kanatlı İHA’ların tasarlanmasına imkân sağlamaktadır. Küçük boyutlu döner kanatlı İHA sistemleri, mevcut otonom denetim yöntemlerinin henüz yeterli seviyeye gelememesinden dolayı, ani rüzgâr durumu gibi rastgele çevresel etkenler ve dışarıdan gelen değişik karakteristik özelliklere sahip bozucu etkilere karşı yeterli düzeyde dayanıklı değildirler. Bu çalışmada hekzakopter İHA sistemlerinin bozucu etkililere rağmen kararlılığını koruyup görevini etkin bir şekilde yerine getirmesi amacıyla bozucu etki önleyici denetleyici tasarlanmıştır. İHA sisteminin yönelim kararlılığı için lineer kuadratik regülatör yöntemi kullanılarak dayanıklı geri besleme kazancı hesaplanmıştır. Ayrıca gözlemci kazancı ve alçak geçiren filtreden oluşan bozucu etki eşdeğerini tahmin mekanizması da tasarlanmıştır. Bu yapı sistemdeki bilinmeyen bozucu etkilerin zamanında tahmin edilmesine olanak sağlamaktadır. Tasarlanan bozucu etki önleyici denetleyicisi kapalı çevrim İHA sisteminin gürbüz kararlılığını garanti eder. Benzetim sonuçları hekzakopter İHA için tasarlanan bozucu önleyici denetleyicinin etkinliğini göstermiştir.

Supporting Institution

Artvin Çoruh Üniversitesi

Project Number

2019.F13.02.01

Thanks

Bu araştırma, Artvin Çoruh Üniversitesi, Bilimsel Araştırma Projeleri (BAP) Birimine tarafından 2019.F13.02.01 numaralı projeyle desteklenmiştir.

References

  • A. Kostas, G. Nikolakopoulos, and A. Tzes, Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory & Applications, 6.12, 1812-1827, 2012. https://doi.org/ 10.1049/iet-cta.2011.0348
  • W.H. Chen, J. Yang, L. Guo and S. Li, Disturbance-observer-based control and related methods—An overview. IEEE Transactions on Industrial Electronics, 63.2, 1083-1095 2016. https://doi.org/10.1109/TIE .20 15.2478397
  • J. Zhang, D. Gu, C. Deng, and B. Wen, Robust and Adaptive Backstepping Control for Hexacopter UAVs. IEEE Access, 7, 163502-163514, 2019. https://doi .org/10.1109/ ACCESS.2019.2951282
  • D. Derawi, N. D. Salim, H. Zamzuri, M. A. Abdul Rahman and Nonami, K. Robust attitude control design for a low-cost hexarotor micro aerial vehicle. Transactions of the Institute of Measurement and Control, 38(6), 701-721, 2016. https://doi.org/10. 1177/0142331215625768
  • A. Alaimo, V. Artale, C. L. R. Milazzo and A. Ricciardello, PID controller applied to hexacopter flight. Journal of Intelligent & Robotic Systems, 73(1-4), 261-270, 2014. https://doi.org/10.1007/s10846-013-9947-y
  • A. Freddi, S. Longhi, A. Monteriù and M. Prist, Actuator fault detection and isolation system for an hexacopter. IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA) (pp. 1-6), Senigallia, Italy, 2014.
  • C. Rosales, C. M. Soria and F. G. Rossomando, Identification and adaptive PID Control of a hexacopter UAV based on neural networks. International Journal of Adaptive Control and Signal Processing, 33(1), 74-9, 2019. https://doi.org/10.1002/acs.2955
  • J. A. Ligthart, P. Poksawat, L. Wang and H. Nijmeijer, Experimentally validated model predictive controller for a hexacopter. IFAC-PapersOnLine, 50(1), pp. 4076–4081, Toulouse, France, 2017.
  • N. Tien, D. Saussie, and L. Saydy, Design and Experimental Validation of Robust Self-Scheduled Fault-Tolerant Control Laws for a Multicopter UAV. IEEE/ASME Transactions on Mechatronics, early access, 2020. https://doi.org/10.1109/TMECH .2020.3042333
  • K. Guo, J. Jia, X. Yu, L. Guo and L. Xie, Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances. Control Engineering Practice, 102, 104560, 2020. https: //doi .org/10.1016/j.conengprac.2020.104560
  • D. Shi, Z. Wu, and W. Chou, Anti-disturbance trajectory tracking of quadrotor vehicles via generalized extended state observer. Journal of Vibration and Control, 26.13-14, 1173-1186, 2020.https://doi.org/ 10. 1177/1077546319892752
  • Y. Yuan, L. Cheng, Z. Wang and C. Sun, Position tracking and attitude control for quadrotors via active disturbance rejection control method. Science China Information Sciences, 62(1), 1-10, 2019. https://doi. org/10.1007/s11432-018-9548-5
  • J. H. She, H. Kobayashi, Y. Ohyama and X. Xin, Disturbance estimation and rejection-An equivalent input disturbance estimator approach. In 43rd IEEE Conference on Decision and Control (CDC), Vol. 2, pp. 1736-1741, Nassau, Bahamas, 2004.
  • H. Wei, Optimal Robust Control Systems Design and Analysis by State Space Approaches, Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 1995
  • B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. John Wiley & Sons, 1992
  • X. Chen, W. Cai, M. Wu, and W. Cao, A new approach for periodic disturbance rejection in input-time-delay systems. Transactions of the Institute of Measurement and Control, 40(8), 2589-2598, 2018. https://doi.org/ 10.1177/0142331217707571
  • B. D. O. Anderson and J. B. Moore, Optimal Control:Linear Quadratic Methods. Englewood Cliffs, NJ: Prentice-Hall, 2007.
  • K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper Saddle River, NJ: Prentice-Hall, 1996.

Anti-disturbance controller design for a hexacopter unmanned aerial vehicle using equivalent disturbance estimation

Year 2021, Volume: 10 Issue: 2, 535 - 544, 27.07.2021
https://doi.org/10.28948/ngumuh.804951

Abstract

Unmanned Aerial Vehicles (UAVs) equipped with video camera, camera, laser scanning device, etc. and perform their duties remotely or automatically. Recently, rapid progress in development of computers' data processing capacities, sensors, and semiconductor technologies have resulted in the emergence of small-sized rotary-wing UAVs. Small size rotary-wing UAV systems are more sensitive to environmental conditions such as gust and external disturbances because existing autonomous control systems are not sufficient to cope with these disturbances. In this study, an anti-disturbance controller has been designed for that a hexacopter UAV maintains its stability and are able to perform their duties in the despite of the external disturbances. Optimal gain has been calculated by linear quadratic regulator method for the attitude stability of the UAV system. In addition, a mechanism of equivalent disturbance estimation, which is consisting of an observer gain and a low pass filter, is designed. This structure estimated the unknown disturbing effects in the UAV system in time. The designed anti-disturbance controller guarantees the robust stability of the closed-loop UAV system. The simulation results demonstrated the effectiveness of the designed anti-disturbance controller for the hexacopter UAV.

Project Number

2019.F13.02.01

References

  • A. Kostas, G. Nikolakopoulos, and A. Tzes, Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory & Applications, 6.12, 1812-1827, 2012. https://doi.org/ 10.1049/iet-cta.2011.0348
  • W.H. Chen, J. Yang, L. Guo and S. Li, Disturbance-observer-based control and related methods—An overview. IEEE Transactions on Industrial Electronics, 63.2, 1083-1095 2016. https://doi.org/10.1109/TIE .20 15.2478397
  • J. Zhang, D. Gu, C. Deng, and B. Wen, Robust and Adaptive Backstepping Control for Hexacopter UAVs. IEEE Access, 7, 163502-163514, 2019. https://doi .org/10.1109/ ACCESS.2019.2951282
  • D. Derawi, N. D. Salim, H. Zamzuri, M. A. Abdul Rahman and Nonami, K. Robust attitude control design for a low-cost hexarotor micro aerial vehicle. Transactions of the Institute of Measurement and Control, 38(6), 701-721, 2016. https://doi.org/10. 1177/0142331215625768
  • A. Alaimo, V. Artale, C. L. R. Milazzo and A. Ricciardello, PID controller applied to hexacopter flight. Journal of Intelligent & Robotic Systems, 73(1-4), 261-270, 2014. https://doi.org/10.1007/s10846-013-9947-y
  • A. Freddi, S. Longhi, A. Monteriù and M. Prist, Actuator fault detection and isolation system for an hexacopter. IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA) (pp. 1-6), Senigallia, Italy, 2014.
  • C. Rosales, C. M. Soria and F. G. Rossomando, Identification and adaptive PID Control of a hexacopter UAV based on neural networks. International Journal of Adaptive Control and Signal Processing, 33(1), 74-9, 2019. https://doi.org/10.1002/acs.2955
  • J. A. Ligthart, P. Poksawat, L. Wang and H. Nijmeijer, Experimentally validated model predictive controller for a hexacopter. IFAC-PapersOnLine, 50(1), pp. 4076–4081, Toulouse, France, 2017.
  • N. Tien, D. Saussie, and L. Saydy, Design and Experimental Validation of Robust Self-Scheduled Fault-Tolerant Control Laws for a Multicopter UAV. IEEE/ASME Transactions on Mechatronics, early access, 2020. https://doi.org/10.1109/TMECH .2020.3042333
  • K. Guo, J. Jia, X. Yu, L. Guo and L. Xie, Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances. Control Engineering Practice, 102, 104560, 2020. https: //doi .org/10.1016/j.conengprac.2020.104560
  • D. Shi, Z. Wu, and W. Chou, Anti-disturbance trajectory tracking of quadrotor vehicles via generalized extended state observer. Journal of Vibration and Control, 26.13-14, 1173-1186, 2020.https://doi.org/ 10. 1177/1077546319892752
  • Y. Yuan, L. Cheng, Z. Wang and C. Sun, Position tracking and attitude control for quadrotors via active disturbance rejection control method. Science China Information Sciences, 62(1), 1-10, 2019. https://doi. org/10.1007/s11432-018-9548-5
  • J. H. She, H. Kobayashi, Y. Ohyama and X. Xin, Disturbance estimation and rejection-An equivalent input disturbance estimator approach. In 43rd IEEE Conference on Decision and Control (CDC), Vol. 2, pp. 1736-1741, Nassau, Bahamas, 2004.
  • H. Wei, Optimal Robust Control Systems Design and Analysis by State Space Approaches, Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 1995
  • B. L. Stevens and F. L. Lewis. Aircraft Control and Simulation. John Wiley & Sons, 1992
  • X. Chen, W. Cai, M. Wu, and W. Cao, A new approach for periodic disturbance rejection in input-time-delay systems. Transactions of the Institute of Measurement and Control, 40(8), 2589-2598, 2018. https://doi.org/ 10.1177/0142331217707571
  • B. D. O. Anderson and J. B. Moore, Optimal Control:Linear Quadratic Methods. Englewood Cliffs, NJ: Prentice-Hall, 2007.
  • K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper Saddle River, NJ: Prentice-Hall, 1996.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Hasan Başak 0000-0002-3724-6819

Emre Kemer 0000-0001-8716-1971

Project Number 2019.F13.02.01
Publication Date July 27, 2021
Submission Date October 4, 2020
Acceptance Date March 5, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Başak, H., & Kemer, E. (2021). Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 535-544. https://doi.org/10.28948/ngumuh.804951
AMA Başak H, Kemer E. Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı. NOHU J. Eng. Sci. July 2021;10(2):535-544. doi:10.28948/ngumuh.804951
Chicago Başak, Hasan, and Emre Kemer. “Hekzakopter insansız Hava Aracı için eşdeğer Bozucu Etki Tahmini kullanılarak Bozucu Etki önleyici Denetleyici tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 535-44. https://doi.org/10.28948/ngumuh.804951.
EndNote Başak H, Kemer E (July 1, 2021) Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 535–544.
IEEE H. Başak and E. Kemer, “Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı”, NOHU J. Eng. Sci., vol. 10, no. 2, pp. 535–544, 2021, doi: 10.28948/ngumuh.804951.
ISNAD Başak, Hasan - Kemer, Emre. “Hekzakopter insansız Hava Aracı için eşdeğer Bozucu Etki Tahmini kullanılarak Bozucu Etki önleyici Denetleyici tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 535-544. https://doi.org/10.28948/ngumuh.804951.
JAMA Başak H, Kemer E. Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı. NOHU J. Eng. Sci. 2021;10:535–544.
MLA Başak, Hasan and Emre Kemer. “Hekzakopter insansız Hava Aracı için eşdeğer Bozucu Etki Tahmini kullanılarak Bozucu Etki önleyici Denetleyici tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 535-44, doi:10.28948/ngumuh.804951.
Vancouver Başak H, Kemer E. Hekzakopter insansız hava aracı için eşdeğer bozucu etki tahmini kullanılarak bozucu etki önleyici denetleyici tasarımı. NOHU J. Eng. Sci. 2021;10(2):535-44.

download