Research Article
BibTex RIS Cite

The behavior of Bacillus sp. improved soils under freeze-thaw effect

Year 2021, Volume: 10 Issue: 2, 704 - 711, 27.07.2021
https://doi.org/10.28948/ngumuh.898554

Abstract

In recent years, the need for land has been increasing due to the increasing population, especially in big cities. In addition to the use of lands that meet sufficient criteria in terms of foundation soils, it has become compulsory to use lands that do not meet these criteria. In lands that do not meet sufficient criteria in terms of basic soils, improvement is made by using classical additives such as lime, fly ash, blast furnace slag. However, these additives are not environmentally friendly as they increase CO2 emissions in nature. Therefore, in recent years, there has been an interest in new environmentally friendly additives alternative to these additives. One of these additives is Bacillus Sp. which provides improvement in the soils by producing CaCO3 in the soil where it is injected. In this study, strength and swelling pressures were investigated under freeze-thaw cycles on high plasticity clay (CH) and sandy clay (SC) soils injected with Bacillus Sp. According to the results, it was determined that Bacillus Sp. contributed positively to the improvement of the strength and swelling pressure parameters of soils.

Project Number

-

References

  • H. Tremblay, D. Josée, L. Jacques, and L. Serge, Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal 39(3), 535-46, 2020. https://doi.org/ 10.1139/t02-002
  • F. G. Bell, Lime stabilization of clay minerals and soils. Engineering geology 42(4), 223-37, 1996. https://doi.org/10.1016/0013-7952(96)00028-2
  • A. Arulrajah, Y. Mohammadjavad, M.D. Mahdi, H. Suksun, W.B. Myint and L. Melvyn, Evaluation of fly ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations 58(6):1358-70, 2018. https://doi.org/ 10.1016/j.sandf.2018.07.005
  • A. Kumar and P.V. Sivapullaiah, Improvement of strength of expansive soil with waste granulated blast furnace slag. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, 3920-8, 2012. https://doi.org/10.1061/9780784412121.402
  • M. Kianimehr, T.S. Piltan, M.B.Seyed, M. Alireza and A. Arul, Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials 227, 116792, 2019. https://doi.org/10.1016/j.conbuildmat.2019.116792
  • M.P. Bilondi, M.T. Mohammad and T. Vahid, Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils. Construction and Building Materials 170, 302-13, 2018. https://doi.org/10.1016/ j.conbuildmat.2018.03.049
  • A. Ateş, Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering 96, 295-304, 2016. https://doi.org/10.1016/j.compositesb. 2016.04.049
  • S. N. Esmaeilpour, T. G. Abbasali, K. T. Mohammadreza and J. C. Asskar, Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics 19, 1-8, 2019. https://doi.org/10.1016/j.trgeo.2019.01.004
  • O. Sivrikaya, F. Uysal, A. Yorulmaz and K. Aydın. The efficiency of waste marble powder in the stabilization of fine-grained soils in terms of volume changes. Arabian Journal for Science and Engineering, 45, 8561–8576, 2020. https://doi.org/10.1007/s13369-020-04768-0
  • A. Yorulmaz, O. Sivrikaya and F. Uysal, Evaluation of the bearing capacity of poor subgrade soils stabilized with waste marble powder according to curing time and freeze-thaw cycles. Arabian Journal of Geosciences, 14, 360, 2021. https://doi.org/10.1007/s12517-021-06749-5
  • K. Aydin, O. Sivrikaya and F. Uysal, Effects of curing time and freeze–thaw cycle on strength of soils with high plasticity stabilized by waste marble powder. J Mater Cycles Waste Manag 22, 1459–1474, 2020. https://doi.org/10.1007/s10163-020-01035-0
  • J. T. Dejong, M. B. Fritzges and K. Nusslein. Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng. 132, 1381–1392ASCE 1090-0241, 2006. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
  • S. Douglas, T.J. Beveridge, Mineral formation by bacteria in natural Communities, FEMS Microb. Ecol. 26, 79–88, 1998. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
  • F. S. Stocks, J. K. Galinat and S. S. Bang, Microbiological precipitation of CaCO3, Soil Biol. Biochem. 31(11), 1563–1571, 1999. https://doi.org/ 10.1016/S0038-0717(99)00082-6
  • J. T. Dejong, B. M. Mortensen, B. C. Martinez and D. C. Nelson, Biomediated soil improvement, Ecol. Eng., 36(2), 197-210, 2010. https://doi.org/10.1016/ j.ecoleng.2008.12.029
  • S. S. Bang, J. K. Galinat and V. Ramakrishnan, Calcite precipitation induced by polyurethane-immobilized Sporosarcina pasteurii. Enzym. Microb. Technol. 28, 404–409, 2001. https://doi.org/10.1016/S0141-0229(00)00348-3
  • V. S. Whiffin, L. A. van Paassen, and M. P. Harkes, Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 25(5), 417-423, 2007. https://doi.org/10.1080/0149045070 1436505
  • H. Yasuhara, D. Neupane D., Hayashi K. and M. Okamura, Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation, Soils and Foundations, 52(3), 539-549, 2012. https://doi.org/10.1016/j.sandf. 2012.05.011
  • N. W. Soon, L. M. Lee, T. C. Khun and H. S. Ling, Improvements in engineering properties of soils through microbial-induced calcite precipitation, KSCE Journal of Civil Engineering, 17(4), 718-728, 2013. https://doi.org/10.1007/s12205-013-0149-8
  • M. Nemati and G. Voordouw, Modification of porous media permeability, using calcium carbonate produced enzymatically in situ, Enzyme and Microbial Technology, 33(5), 635-642, 2003. https://doi.org/10.1016/S0141-0229(03)00191-1
  • F. G. Ferris, L. G. Stehmeier, A. Kantzas and F. M. Mourits, Bacteriogenic mineral plugging, Journal of Canadian Petroleum Technology, 36 (9), 1997. https://doi.org/10.2118/97-09-07
  • V. Ivanov and J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Reviews in Environmental Science and Biotechnology, 7(2), 139-153, 2008. https://doi.org/10.1007/s11157-007-9126-3
  • J. Chu, V. Stabnikov and V. Ivanov, Microbially induced calcium carbonate precipitation on surface or in the bulk of soil, Geomicrobiology Journal 29(6), 544-549, 2012. https://doi.org/10.1080/01490451. 2011.592929
  • H. Canakci, W. Sidik, and I. H. Kilic, Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil, Soils and Foundations, Part A 55(5), 1211-1221, 2015. https://doi.org/10.1016/j.sandf.2015.09.020
  • TS 1500, İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması. Türk Standartları Enstitüsü. Ankara, 2000.
  • M. Ghazavi and M. Roustaie, The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay, Cold Regions Science and Technology, 61, 125-131, 2010. https://doi.org/ 10.1016/j.coldregions.2009.12.005
  • J. Liu, T. Wang and Y. Tian, Experimental study of the dynamic properties of cement- and lime- modified clay soils subjected to freeze-thaw cycles. Cold Regions Science and Technology, 61, 29-33, 2010. https://doi.org/10.1016/j.coldregions.2010.01.002
  • K. Hazirbaba, Y. Zhang, and J.L. Hulsey, Evaluation of temperature and freeze-thaw effects on excess pore pressure generation of fine-grained soils. Soil Dynamics and Earthquake Engineering, 31, 372-384, 2011. https://doi.org/10.1016/j.soildyn.2010.09.006
  • A. Ş. Zaimoğlu, F. Hattatoğlu and R. K. Akbulut, Yüke maruz ince taneli zeminlerin donma-çözülme davranışı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121, 2013. https://doi.org/10.5505/ pajes.2013.35744
  • B. Mahmutluoğlu and B. Bağrıaçık, Killi zeminlerin donma-çözülme davranışlarında cam atık çamurunun etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3) , 783-796, 2020. https://doi.org/10.21605/cukurovaummfd.846739
  • TS 1900-2, İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standartları Enstitüsü. Ankara, 2006.

Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı

Year 2021, Volume: 10 Issue: 2, 704 - 711, 27.07.2021
https://doi.org/10.28948/ngumuh.898554

Abstract

Son yıllarda, özellikle büyük kentlerde artan nüfusa bağlı olarak arazi kullanımı git gide artmaktadır. Bu durumda, temel zemini bakımından yeterli kriterli sağlayan arazilerin kullanımının yanı sıra bu kriterleri sağlamayan arazilerin kullanımını da zorunlu hale getirmiştir. Temel zemini bakımından yeterli kriterleri sağlamayan arazilerde, kireç, uçucu kül, yüksek fırın cürufu gibi katkılarla zemin iyileştirme yapılarak istenilen kriterlere ulaşılmaktadır. Ancak bu katkılar doğada CO2 salınımını artırdığı için çevre dostu değillerdir. Bu nedenle, bu katkıların yerini yeni nesil çevre dostu zemin iyileştirme katkıları almaktadır. Bu katkılardan bir tanesi enjekte edildiği zemin içerisinde CaCO3 üreterek iyileşme sağlayan Bacillus Sp.’dir. Bu bağlamda çalışma kapsamında, yüksek plastisiteli kil (CH) ve kumlu kil (SC) türü iki farklı zemin türünde yeni nesil iyileştirme katkısı olan Bacillus Sp. kullanılarak, donma çözülme döngüleri altında mukavemet ve şişme basıncı davranışları araştırılmıştır. Sonuçlara göre, Bacillus Sp.’nin CH ve SC türü zeminlerde, mukavemet ve şişme basıncı parametrelerinin iyileştirilmesinde olumlu yönde katkısı olduğu belirlenmiştir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • H. Tremblay, D. Josée, L. Jacques, and L. Serge, Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal 39(3), 535-46, 2020. https://doi.org/ 10.1139/t02-002
  • F. G. Bell, Lime stabilization of clay minerals and soils. Engineering geology 42(4), 223-37, 1996. https://doi.org/10.1016/0013-7952(96)00028-2
  • A. Arulrajah, Y. Mohammadjavad, M.D. Mahdi, H. Suksun, W.B. Myint and L. Melvyn, Evaluation of fly ash-and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations 58(6):1358-70, 2018. https://doi.org/ 10.1016/j.sandf.2018.07.005
  • A. Kumar and P.V. Sivapullaiah, Improvement of strength of expansive soil with waste granulated blast furnace slag. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, 3920-8, 2012. https://doi.org/10.1061/9780784412121.402
  • M. Kianimehr, T.S. Piltan, M.B.Seyed, M. Alireza and A. Arul, Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials 227, 116792, 2019. https://doi.org/10.1016/j.conbuildmat.2019.116792
  • M.P. Bilondi, M.T. Mohammad and T. Vahid, Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils. Construction and Building Materials 170, 302-13, 2018. https://doi.org/10.1016/ j.conbuildmat.2018.03.049
  • A. Ateş, Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering 96, 295-304, 2016. https://doi.org/10.1016/j.compositesb. 2016.04.049
  • S. N. Esmaeilpour, T. G. Abbasali, K. T. Mohammadreza and J. C. Asskar, Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics 19, 1-8, 2019. https://doi.org/10.1016/j.trgeo.2019.01.004
  • O. Sivrikaya, F. Uysal, A. Yorulmaz and K. Aydın. The efficiency of waste marble powder in the stabilization of fine-grained soils in terms of volume changes. Arabian Journal for Science and Engineering, 45, 8561–8576, 2020. https://doi.org/10.1007/s13369-020-04768-0
  • A. Yorulmaz, O. Sivrikaya and F. Uysal, Evaluation of the bearing capacity of poor subgrade soils stabilized with waste marble powder according to curing time and freeze-thaw cycles. Arabian Journal of Geosciences, 14, 360, 2021. https://doi.org/10.1007/s12517-021-06749-5
  • K. Aydin, O. Sivrikaya and F. Uysal, Effects of curing time and freeze–thaw cycle on strength of soils with high plasticity stabilized by waste marble powder. J Mater Cycles Waste Manag 22, 1459–1474, 2020. https://doi.org/10.1007/s10163-020-01035-0
  • J. T. Dejong, M. B. Fritzges and K. Nusslein. Microbially induced cementation to control sand response to undrained shear, J. Geotech. Geoenviron. Eng. 132, 1381–1392ASCE 1090-0241, 2006. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
  • S. Douglas, T.J. Beveridge, Mineral formation by bacteria in natural Communities, FEMS Microb. Ecol. 26, 79–88, 1998. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
  • F. S. Stocks, J. K. Galinat and S. S. Bang, Microbiological precipitation of CaCO3, Soil Biol. Biochem. 31(11), 1563–1571, 1999. https://doi.org/ 10.1016/S0038-0717(99)00082-6
  • J. T. Dejong, B. M. Mortensen, B. C. Martinez and D. C. Nelson, Biomediated soil improvement, Ecol. Eng., 36(2), 197-210, 2010. https://doi.org/10.1016/ j.ecoleng.2008.12.029
  • S. S. Bang, J. K. Galinat and V. Ramakrishnan, Calcite precipitation induced by polyurethane-immobilized Sporosarcina pasteurii. Enzym. Microb. Technol. 28, 404–409, 2001. https://doi.org/10.1016/S0141-0229(00)00348-3
  • V. S. Whiffin, L. A. van Paassen, and M. P. Harkes, Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 25(5), 417-423, 2007. https://doi.org/10.1080/0149045070 1436505
  • H. Yasuhara, D. Neupane D., Hayashi K. and M. Okamura, Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation, Soils and Foundations, 52(3), 539-549, 2012. https://doi.org/10.1016/j.sandf. 2012.05.011
  • N. W. Soon, L. M. Lee, T. C. Khun and H. S. Ling, Improvements in engineering properties of soils through microbial-induced calcite precipitation, KSCE Journal of Civil Engineering, 17(4), 718-728, 2013. https://doi.org/10.1007/s12205-013-0149-8
  • M. Nemati and G. Voordouw, Modification of porous media permeability, using calcium carbonate produced enzymatically in situ, Enzyme and Microbial Technology, 33(5), 635-642, 2003. https://doi.org/10.1016/S0141-0229(03)00191-1
  • F. G. Ferris, L. G. Stehmeier, A. Kantzas and F. M. Mourits, Bacteriogenic mineral plugging, Journal of Canadian Petroleum Technology, 36 (9), 1997. https://doi.org/10.2118/97-09-07
  • V. Ivanov and J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Reviews in Environmental Science and Biotechnology, 7(2), 139-153, 2008. https://doi.org/10.1007/s11157-007-9126-3
  • J. Chu, V. Stabnikov and V. Ivanov, Microbially induced calcium carbonate precipitation on surface or in the bulk of soil, Geomicrobiology Journal 29(6), 544-549, 2012. https://doi.org/10.1080/01490451. 2011.592929
  • H. Canakci, W. Sidik, and I. H. Kilic, Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil, Soils and Foundations, Part A 55(5), 1211-1221, 2015. https://doi.org/10.1016/j.sandf.2015.09.020
  • TS 1500, İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması. Türk Standartları Enstitüsü. Ankara, 2000.
  • M. Ghazavi and M. Roustaie, The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay, Cold Regions Science and Technology, 61, 125-131, 2010. https://doi.org/ 10.1016/j.coldregions.2009.12.005
  • J. Liu, T. Wang and Y. Tian, Experimental study of the dynamic properties of cement- and lime- modified clay soils subjected to freeze-thaw cycles. Cold Regions Science and Technology, 61, 29-33, 2010. https://doi.org/10.1016/j.coldregions.2010.01.002
  • K. Hazirbaba, Y. Zhang, and J.L. Hulsey, Evaluation of temperature and freeze-thaw effects on excess pore pressure generation of fine-grained soils. Soil Dynamics and Earthquake Engineering, 31, 372-384, 2011. https://doi.org/10.1016/j.soildyn.2010.09.006
  • A. Ş. Zaimoğlu, F. Hattatoğlu and R. K. Akbulut, Yüke maruz ince taneli zeminlerin donma-çözülme davranışı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121, 2013. https://doi.org/10.5505/ pajes.2013.35744
  • B. Mahmutluoğlu and B. Bağrıaçık, Killi zeminlerin donma-çözülme davranışlarında cam atık çamurunun etkisi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(3) , 783-796, 2020. https://doi.org/10.21605/cukurovaummfd.846739
  • TS 1900-2, İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standartları Enstitüsü. Ankara, 2006.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Baki Bağrıaçık 0000-0002-1860-2881

Fatıma Masume Uslu This is me 0000-0001-9137-315X

Esra Sunduz Yiğittekin This is me 0000-0003-3584-3465

Anıl Delik This is me 0000-0002-6443-9392

Sadık Dinçer 0000-0002-0298-0917

Project Number -
Publication Date July 27, 2021
Submission Date March 17, 2021
Acceptance Date July 3, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Bağrıaçık, B., Uslu, F. M., Sunduz Yiğittekin, E., Delik, A., et al. (2021). Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 704-711. https://doi.org/10.28948/ngumuh.898554
AMA Bağrıaçık B, Uslu FM, Sunduz Yiğittekin E, Delik A, Dinçer S. Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. NOHU J. Eng. Sci. July 2021;10(2):704-711. doi:10.28948/ngumuh.898554
Chicago Bağrıaçık, Baki, Fatıma Masume Uslu, Esra Sunduz Yiğittekin, Anıl Delik, and Sadık Dinçer. “Bacillus Sp. Ile iyileştirilmiş Zeminlerin Donma çözülme Etkisindeki davranışı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10, no. 2 (July 2021): 704-11. https://doi.org/10.28948/ngumuh.898554.
EndNote Bağrıaçık B, Uslu FM, Sunduz Yiğittekin E, Delik A, Dinçer S (July 1, 2021) Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10 2 704–711.
IEEE B. Bağrıaçık, F. M. Uslu, E. Sunduz Yiğittekin, A. Delik, and S. Dinçer, “Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı”, NOHU J. Eng. Sci., vol. 10, no. 2, pp. 704–711, 2021, doi: 10.28948/ngumuh.898554.
ISNAD Bağrıaçık, Baki et al. “Bacillus Sp. Ile iyileştirilmiş Zeminlerin Donma çözülme Etkisindeki davranışı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 10/2 (July 2021), 704-711. https://doi.org/10.28948/ngumuh.898554.
JAMA Bağrıaçık B, Uslu FM, Sunduz Yiğittekin E, Delik A, Dinçer S. Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. NOHU J. Eng. Sci. 2021;10:704–711.
MLA Bağrıaçık, Baki et al. “Bacillus Sp. Ile iyileştirilmiş Zeminlerin Donma çözülme Etkisindeki davranışı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 10, no. 2, 2021, pp. 704-11, doi:10.28948/ngumuh.898554.
Vancouver Bağrıaçık B, Uslu FM, Sunduz Yiğittekin E, Delik A, Dinçer S. Bacillus sp. ile iyileştirilmiş zeminlerin donma çözülme etkisindeki davranışı. NOHU J. Eng. Sci. 2021;10(2):704-11.

download