Research Article
BibTex RIS Cite

Tuzgölü Havzasından Üst Eosen-Oligosen kumtaşlarının jeokimyası (Orta Anadolu)

Year 2022, Volume: 11 Issue: 1, 157 - 169, 14.01.2022
https://doi.org/10.28948/ngumuh.1018818

Abstract

Bu çalışmada, Tuzgölü Havzasının doğu sınırında Tuzgölü Fay Zonu (TFZ) tarafından açığa çıkarılmış olan Üst Eosen-Oligosen kumtaşlarının mineralojik ve jeokimyasal özellikleri incelenmiştir. Th/Sc-Zr/Sc diyagramında zirkon zenginleşmesinin olmaması, sedimanter tekrardan çevrim olmadığını belirtmiştir. Bu, kumtaşlarının birinci döngü çökel olduğunu yani malzemenin doğrudan kaynaktan gelmiş olduğunu göstermektedir. La/Sc, La/Co, Th/Sc, Th/Co, Th/Cr, Zr/Sc, Zr/Co, Ba/Sc ve Ba/Co gibi provenans için kritik element oranları, Th/Sc-Eu/Eu* diyagramı ve ortalama Nadir Toprak Element (NTE) deseni, “ortaç magmatik” bileşimli bir provenansı önermektedir. İstifin alt ve üst kısımları arasında gözlemlenen negatif Ce anomalisi etkisindeki farklılık, suyun oksijen seviyesinde değişim olduğunu göstermektedir. La-Th-Sc, Th-Co-Zr/10 ve Th-Sc-Zr/10 tektonik konum ayırma diyagramlarının her birinde kumtaşı ortalaması “Kıtasal Adayayı” konumuna düşmüştür. Bu tektonik konum dalma batma zonunun kıta kenarında gelişen bir yaydır. Bulunan tektonik konum, Tuzgölü Havzasının bir yay önü havza olarak geliştiği yönündeki evrim modelini desteklemiştir.

Supporting Institution

Selçuk Üniversitesi (BAP)

Project Number

09101002

References

  • A. Aydemir, Hydrocarbon potential of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey: A comparison of geophysical investigation results with the geochemical data. Journal of Petroleum Science and Engineering, 61 (1), 33-47, 2008. http://dx.doi.org/ 10.1016/j.petrol.2007.10.004
  • A. Aydemir, Tectonic investigation of Central Anatolia, Turkey, using geophysical data. Journal of Applied Geophysics, 68, 321-334, 2009.
  • A. Aydemir and A. Ateş, Interpretation of Suluklu-Cihanbeyli-Goloren magnetic anomaly, Central Anatolia, Turkey: An integration of geophysical data. Physics of the Earth and Planetary Interiors, 159 (3–4), 167-182, 2006. http://dx.doi.org/10.1016/ j.pepi.2006.06.007
  • C. Gürbüz and J. R. Evans, A seismic refraction study of the western Tuz Gölü basin, central Turkey. Geophysical Journal International, 106 (1), 239-251, 1991. https://doi.org/10.1111/j.1365-246X.1991.tb04614.x.
  • H. Ü. Ercan, M. Ç. Karakaya, A. Bozdağ, N. Karakaya and A. Delikan, Origin and evolution of halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin, Turkey. Applied Geochemistry, 105, 17-30, 2019. https://doi.org/10.1016/j.apgeochem.2019.04.008.
  • K. Dirik and M. C. Göncüoglu, Neotectonic characteristics of Central Anatolia. International Geology Review, 38 (9), 807-817, 1996. https://doi.org/10.1080/00206819709465363.
  • E. Özsayin and K. Dirik, Quaternary activity of the Cihanbeyli and Yeniceoba fault zones: İnönü-Eskişehir fault system, Central Anatolia. Turkish Journal of Earth Sciences, 16 (4), 471-492, 2007.
  • M. Y. Hüseyinca, Mineralogical and geochemical characteristics of the sediments in Lake Tuz and the close vicinity (in Turkish). Ph.D. Thesis, Selçuk University, Konya, 2015.
  • A. Uygun and E. Şen, Tuz Gölü Havzası ve doğal kaynakları I: Tuz Gölü suyunun jeokimyası. Bulletin of the Geological Society of Turkey, 21, 113-120, 1978.
  • K. Dirik and O. Erol, Tuzgölü ve civarının tektonomorfolojik evrimi Orta Anadolu, Türkiye. Türkiye Petrol Jeologları Derneği Özel Sayı, 5, 27-46, 2000.
  • M. Clark and A. Robertson, The role of the Early Tertiary Ulukisla Basin, southern Turkey, in suturing of the Mesozoic Tethys Ocean. Journal of the Geological Society, 159 (6), 673-690, 2002.
  • N. Görür, F. Y. Oktay, İ. Seymen and A. M. C. Şengör, Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. In J. E. Dixon, A. H. F. Robertson (Eds.), The geological evolution of the eastern mediterranean, pp. 467-482, Geological Society Special Publications, London, 1984.
  • A. Koçyiğit, An example of an accretionary forearc basin from northern Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geological Society of America Bulletin, 103 (1), 22-36, 1991. https://doi.org/ 10.1130/00167606(1991)103<0022:aeoaaf>2.3.co;2.
  • Y. Arıkan, Tuz Gölü havzasının jeolojisi ve petrol imkanları. M.T.A. Dergisi, 85, 17-38, 1975.
  • I. Çemen, M. C. Göncüoglu and K. Dirik, Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of geology, 107 (6), 693-706, 1999.
  • M. Clark and A. Robertson, Uppermost Cretaceous–Lower Tertiary Ulukışla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology, 173 (1), 15-51, 2005. https://doi.org/10.1016/j.sedgeo.2003.12.010.
  • A. I. Okay and O. Tüysüz, Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156 (1), 475-515, 1999.
  • A. M. C. Şengör, Tectonics of the tethysides: orogenic collage development in a collisional setting. annual review of earth and planetary sciences, 15 (1), 213-244, 1987.
  • G. M. Stampfli, The intra-alpine terrain: A paleotethyan remnant in the alpine variscides. Eclogae Geologicae Helvetiae, 89 (1), 13-42, 1996.
  • A. M. C. Şengör and Y. Yilmaz, Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75 (3), 181-241, 1981.
  • A. Okay, Geology of Turkey: A Synopsis. Anschitt, 21, 19-42, 2008.
  • N. Görür, O. Tüysüz and A. M. C. Şengör, Tectonic evolution of the Central Anatolian basins. International Geology Review, 40 (9), 831-850, 1998. https://doi.org/10.1080/00206819809465241.
  • M. Şenel, Turkiye Jeoloji Haritası/Geological Map of Turkey, scale 1:500,000. Maden Tetkik Arama Genel Müdürlüğü, Ankara, 2002.
  • İ. Seymen, Kaman dolayında Kırşehir Masifinin jeolojisi. Doçentlik Tezi, İ.T.Ü. Maden Fakültesi, İstanbul, 1982.
  • A. Özcan, M. C. Göncüoğlu, N. Turan, Ş. Uysal, K. Şentük and A. Işık, Late Paleozoik evolution of the Kütahya-Bolkardağ Belt. METU Journal of Pure and Applied Sciences, 21 (1-3), 211-220, 1988.
  • A. Uygun, Tuzgölü havzasının jeolojisi, evaporit oluşumları ve hidrokarbon olanakları. İç Anadolu’nun Jeolojisi Sempozyumu, T.J.K. 35. Bilimsel ve Teknik Kurultayı Bildiriler Kitabı, pp. 66-71, Ankara, 1981.
  • E. Özsayin, T. A. Çiner, F. B. Rojay, R. K. Dirik, D. Melnick, D. Fernández-Blanco, G. Bertotti, T. F. Schildgen, Y. Garcin, M. R. Strecker and M. Sudo, Plio-Quaternary extensional tectonics of the Central Anatolian Plateau: A case study from the Tuz Gölü Basin, Turkey. Turkish Journal of Earth Sciences, 22 (5), 691-714, 2013.
  • A. Kürçer and Y. E. Gökten, Paleoseismological three dimensional virtual photography method; A case study: Bağlarkayası-2010 trench, Tuz Gölü Fault Zone, Central Anatolia, Turkey. In E. Sharkov (Ed.), Tectonics - Recent Advances, IntechOpen, 2012.
  • A. Aydemir and A. Ateş, Structural interpretation of the Tuzgolu and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data. Earth Planets and Space, 58 (8), 951-961, 2006.
  • E. Anders and N. Grevesse, Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53 (1), 197-214, 1989. http://dx.doi.org/10.1016/0016-7037(89)90286-X.
  • S. R. Taylor and S. M. McLennan, The continental crust: Its composition and evolution. Blackwell Scientific Publications, Oxford, 1985.
  • R. L. Folk, Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas, 1974.
  • H. Vital and K. Stattegger, Major and trace elements of stream sediments from the lowermost Amazon River. Chemical geology, 168 (1–2), 151-168, 2000. http://dx.doi.org/10.1016/S0009-2541(00)00191-1.
  • F. J. Pettijohn, P. E. Potter and R. Siever, Sand and sandstone. Springer US, New York, 1972.
  • R. L. Cullers, T. Barrett, R. Carlson and B. Robinson, Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A. Chemical geology, 63 (3–4), 275-297, 1987. http://dx.doi.org/10.1016/ 0009-2541(87)90167-7.
  • H. Elderfield and M. J. Greaves, The rare earth elements in seawater. Nature, 296, 214, 1982.https://doi.org/10.1038/296214a0
  • D. Z. Piper, Rare earth elements in the sedimentary cycle: A summary. Chemical geology, 14 (4), 285-304, 1974. https://doi.org/10.1016/0009-2541(74)90066-7.
  • C. R. German and H. Elderfield, Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica et Cosmochimica Acta, 53 (10), 2561-2571, 1989. https://doi.org/10.1016/0016-7037(89)90128-2.
  • W. G. Powell, P. A. Johnston and C. J. Collom, Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 201 (3), 249-268, 2003. https://doi.org/10.1016/S0031-0182(03)00612-6.
  • S. M. McLennan, S. Hemming, D. K. McDaniel and G. N. Hanson, Geochemical approaches to sedimentation, provenance and tectonics. In M. J. Johnsson, A. Basu (Eds.), Geological Society of America Special Papers, Processes Controlling the Composition of Clastic Sediments, pp. 21-40, 1993.
  • W. R. Dickinson and C. A. Suczek, Plate tectonics and sandstone compositions. AAPG Bulletin, 63 (12), 2164-2182, 1979.
  • S. Critelli, P. E. Rumelhart and R. V. Ingersoll, Petrofacies and Provenance of the Puente Formation (Middle to Upper Miocene), Los-Angeles Basin, Southern California - Implications for Rapid Uplift and Accumulation Rates. Journal of Sedimentary Research Section a-Sedimentary Petrology and Processes, 65 (4), 656-667, 1995.
  • H. Dokuz, Çankırı-Çorum Havzası Oligosen kumtaşlarının petrografisi ve provenansı, Yozgat. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1089-1094, 2018. https://doi.org/ 10.28948/ngumuh.502251
  • K. Hayashi, H. Fujisawa, H. D. Holland and H. Ohmoto, Geochemistry of similar to 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61 (19), 4115-4137, 1997. https://doi.org/10.1016/S0016-7037(97)00214-7.
  • L. Zhou, Z. Wang, W. Gao, K. Zhang, H. Li and L. Zhang, Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: Implications for depositional setting of shales. Geochemistry, 79 (2), 384-398, 2019. https://doi.org/10.1016/j.chemer.2019.05.001.
  • R. L. Cullers, Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical geology, 191 (4), 305-327, 2002. http://dx.doi.org/10.1016/S0009-2541(02)00133-X.
  • B. P. Roser and R. J. Korsch, Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology, 67 (1–2), 119-139, 1988. http://dx.doi.org/10.1016/0009-2541(88)90010-1.
  • P. A. Floyd and B. E. Leveridge, Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144, 531-542, 1987. https://doi.org/ 10.1144/gsjgs.144.4.0531
  • D. Bal Akkoca and Z. Baytaşoğlu, The mineralogy and geochemistry of Neogene sediments from eastern Turkey, southeast of Arapgir (Malatya). Turkish Journal of Earth Sciences, 22 (4), 645-663, 2013. https://doi.org/10.3906/yer-1202-13
  • D. J. Wronkiewicz and K. C. Condie, Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53 (7), 1537-1549, 1989. http://dx.doi.org/ 10.1016/0016-7037(89)90236-6.
  • J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma and S. Ramasamy, Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. Journal of Sedimentary Research, 74 (2), 285-297, 2004. https://doi.org/10.1306/ 082803740285.
  • L. Sun, H. Gui and S. Chen, Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: Implications for provenance, weathering and tectonic setting. Chemie der Erde - Geochemistry, 72 (3), 253-260, 2012. https://doi.org/10.1016/j.chemer.2011.11.006.
  • Z. W. Wang, J. Wang, X. G. Fu, W. Z. Zhan, J. S. Armstrong-Altrin, F. Yu, X. L. Feng, C. Y. Song and S. Q. Zeng, Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting. Journal of Asian Earth Sciences, 160, 118-135, 2018. https://doi.org/10.1016/j.jseaes.2018.04.022.
  • R. L. Cullers and J. L. Graf, Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In Rare earth element geochemistry, pp. 237-274, Elsevier Amsterdam, 1984.
  • S. R. Taylor and S. M. McLennan, Chemical composition and element distribution in the Earth's crust. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition), pp. 697-719, Academic Press, New York, 2003.
  • R. L. Cullers and V. N. Podkovyrov, The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117 (3–4), 157-183, 2002. http://dx.doi.org/10.1016/S0301-9268(02)00079-7.
  • K. C. Condie, Chemical composition and evolution of the upper continental crust : Contrasting results from surface samples and shales. Chemical geology, 104, 1-37, 1993.
  • R. L. Cullers, The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51 (3), 181-203, 2000. http://dx.doi.org/10.1016/S0024-4937(99)00063-8.
  • S. M. McLennan, S. R. Taylor, M. T. McCulloch and J. B. Maynard, Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54 (7), 2015-2050, 1990. http://dx.doi.org/10.1016/0016-7037(90)90269-Q.
  • R. L. Cullers, The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical geology, 123 (1–4), 107-131, 1995. http://dx.doi.org/10.1016/0009-2541(95)00050-V.
  • R. L. Cullers, A. Basu and L. J. Suttner, Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical geology, 70 (4), 335-348, 1988. http://dx.doi.org/10.1016/0009-2541(88)90123-4.
  • M. M. Karadağ, Geochemistry, provenance and tectonic setting of the Late Cambrian–Early Ordovician Seydişehir Formation in the Çaltepe and Fele areas, SE Turkey. Geochemistry, 74 (2), 205-224, 2014. https://doi.org/10.1016/j.chemer.2013.07.002.
  • D. Boztuğ and Y. Harlavan, K–Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. International Journal of Earth Sciences, 97 (3), 585-599, 2008. https://doi.org/10.1007/s00531-007-0176-0.
  • D. Boztuğ, R. C. Jonckheere, M. Heizler, L. Ratschbacher, Y. Harlavan and M. Tichomirova, Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics, 473 (1), 223-233, 2009. https://doi.org/10.1016/j.tecto.2008.05.035.
  • S. Köksal, R. L. Romer, M. C. Göncüoglu and F. Toksoy-Köksal, Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences, 93 (6), 974-989, 2004. https://doi.org/10.1007/s00531-004-0432-5.
  • İ. Kuşcu, G. Gençalioğlu Kuşcu, L. D. Meinert and P. A. Floyd, Tectonic setting and petrogenesis of the Çelebi granitoid, (Kırıkkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration, 76 (3), 175-194, 2002. https://doi.org/10.1016/S0375-6742(02)00254-6.
  • K. Koçak, Mineralogy, geochemistry, and Sr–Nd isotopes of the Cretaceous leucogranite from Karamadazı (Kayseri), central Turkey: implications for their sources and geological setting. Canadian Journal of Earth Sciences, 45 (8), 949-968, 2008. https://doi.org/10.1139/E08-040
  • J. S. Armstrong-Altrin, Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57 (11-12), 1446-1461, 2015. https://doi.org/10.1080/00206814.2014.936055
  • Q. Du, Z. Han, X. Shen, C. Han, Z. Song, L. Gao, M. Han and W. Zhong, Geochronology and geochemistry of Permo-Triassic sandstones in eastern Jilin Province (NE China): Implications for final closure of the Paleo-Asian Ocean. Geoscience Frontiers, 10 (2), 683-704, 2019. https://doi.org/10.1016/j.gsf.2018.03.014.
  • M. R. Bhatia, Plate tectonics and geochemical composition of sandstones. The Journal of geology, 91 (6), 611-627, 1983.
  • B. P. Roser and R. J. Korsch, Determination of tectonic setting of sandstone - mudstone suits using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635-650, 1986. citeulike-article-id:5332564.
  • M. R. Bhatia and K. A. W. Crook, Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92 (2), 181-193, 1986. https://doi.org/10.1007/BF00375292
  • S. P. Verma and J. S. Armstrong-Altrin, Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1-12, 2016. https://doi.org/10.1016/j.sedgeo. 2015.11.011
  • T. A. LaMaskin, R. J. Dorsey and J. D. Vervoort, Tectonic controls on mudrock geochemisry, Mesozoic rocks of eastern Oregon and western Idaho, USA: Implications for cordilleran tectonics. Journal of Sedimentary Research, 78 (12), 765-783, 2008.

Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia)

Year 2022, Volume: 11 Issue: 1, 157 - 169, 14.01.2022
https://doi.org/10.28948/ngumuh.1018818

Abstract

In this study, mineralogical and geochemical features of Upper Eocene-Oligocene sandstones exposed by the Tuzgölü Fault Zone (TFZ) at the eastern border of the Tuzgölü Basin were investigated. The absence of zircon enrichment in the Zr/Sc-Th/Sc diagram indicated no sedimentary recycling. This shows that the sandstones are first cycle sediments, that is, the material transported directly from the source. Critical element ratios for provenance such as La/Sc, La/Co, Th/Sc, Th/Co, Th/Cr, Zr/Sc, Zr/Co, Ba/Sc, and Ba/Co, Th/Sc-Eu/Eu* diagram and average Rare Earth Element (REE) pattern suggest a provenance in “intermediate magmatic” composition. The variation in the negative Ce anomaly effect observed between the lower and upper parts of the sequence indicates variation in the oxygen level of the water. In each of the La-Th-Sc, Th-Co-Zr/10, and Th-Sc-Zr/10 tectonic setting discrimination diagrams, the sandstone average fell onto the “Continental Island Arc” position. This tectonic setting defines the arc that developed along the continental margin of the subduction zone. The tectonic setting found for the basin, supported the evolution model that the Tuzgölü Basin developed as a fore-arc basin.

Project Number

09101002

References

  • A. Aydemir, Hydrocarbon potential of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey: A comparison of geophysical investigation results with the geochemical data. Journal of Petroleum Science and Engineering, 61 (1), 33-47, 2008. http://dx.doi.org/ 10.1016/j.petrol.2007.10.004
  • A. Aydemir, Tectonic investigation of Central Anatolia, Turkey, using geophysical data. Journal of Applied Geophysics, 68, 321-334, 2009.
  • A. Aydemir and A. Ateş, Interpretation of Suluklu-Cihanbeyli-Goloren magnetic anomaly, Central Anatolia, Turkey: An integration of geophysical data. Physics of the Earth and Planetary Interiors, 159 (3–4), 167-182, 2006. http://dx.doi.org/10.1016/ j.pepi.2006.06.007
  • C. Gürbüz and J. R. Evans, A seismic refraction study of the western Tuz Gölü basin, central Turkey. Geophysical Journal International, 106 (1), 239-251, 1991. https://doi.org/10.1111/j.1365-246X.1991.tb04614.x.
  • H. Ü. Ercan, M. Ç. Karakaya, A. Bozdağ, N. Karakaya and A. Delikan, Origin and evolution of halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin, Turkey. Applied Geochemistry, 105, 17-30, 2019. https://doi.org/10.1016/j.apgeochem.2019.04.008.
  • K. Dirik and M. C. Göncüoglu, Neotectonic characteristics of Central Anatolia. International Geology Review, 38 (9), 807-817, 1996. https://doi.org/10.1080/00206819709465363.
  • E. Özsayin and K. Dirik, Quaternary activity of the Cihanbeyli and Yeniceoba fault zones: İnönü-Eskişehir fault system, Central Anatolia. Turkish Journal of Earth Sciences, 16 (4), 471-492, 2007.
  • M. Y. Hüseyinca, Mineralogical and geochemical characteristics of the sediments in Lake Tuz and the close vicinity (in Turkish). Ph.D. Thesis, Selçuk University, Konya, 2015.
  • A. Uygun and E. Şen, Tuz Gölü Havzası ve doğal kaynakları I: Tuz Gölü suyunun jeokimyası. Bulletin of the Geological Society of Turkey, 21, 113-120, 1978.
  • K. Dirik and O. Erol, Tuzgölü ve civarının tektonomorfolojik evrimi Orta Anadolu, Türkiye. Türkiye Petrol Jeologları Derneği Özel Sayı, 5, 27-46, 2000.
  • M. Clark and A. Robertson, The role of the Early Tertiary Ulukisla Basin, southern Turkey, in suturing of the Mesozoic Tethys Ocean. Journal of the Geological Society, 159 (6), 673-690, 2002.
  • N. Görür, F. Y. Oktay, İ. Seymen and A. M. C. Şengör, Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. In J. E. Dixon, A. H. F. Robertson (Eds.), The geological evolution of the eastern mediterranean, pp. 467-482, Geological Society Special Publications, London, 1984.
  • A. Koçyiğit, An example of an accretionary forearc basin from northern Central Anatolia and its implications for the history of subduction of Neo-Tethys in Turkey. Geological Society of America Bulletin, 103 (1), 22-36, 1991. https://doi.org/ 10.1130/00167606(1991)103<0022:aeoaaf>2.3.co;2.
  • Y. Arıkan, Tuz Gölü havzasının jeolojisi ve petrol imkanları. M.T.A. Dergisi, 85, 17-38, 1975.
  • I. Çemen, M. C. Göncüoglu and K. Dirik, Structural evolution of the Tuzgölü basin in Central Anatolia, Turkey. The Journal of geology, 107 (6), 693-706, 1999.
  • M. Clark and A. Robertson, Uppermost Cretaceous–Lower Tertiary Ulukışla Basin, south-central Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology, 173 (1), 15-51, 2005. https://doi.org/10.1016/j.sedgeo.2003.12.010.
  • A. I. Okay and O. Tüysüz, Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156 (1), 475-515, 1999.
  • A. M. C. Şengör, Tectonics of the tethysides: orogenic collage development in a collisional setting. annual review of earth and planetary sciences, 15 (1), 213-244, 1987.
  • G. M. Stampfli, The intra-alpine terrain: A paleotethyan remnant in the alpine variscides. Eclogae Geologicae Helvetiae, 89 (1), 13-42, 1996.
  • A. M. C. Şengör and Y. Yilmaz, Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75 (3), 181-241, 1981.
  • A. Okay, Geology of Turkey: A Synopsis. Anschitt, 21, 19-42, 2008.
  • N. Görür, O. Tüysüz and A. M. C. Şengör, Tectonic evolution of the Central Anatolian basins. International Geology Review, 40 (9), 831-850, 1998. https://doi.org/10.1080/00206819809465241.
  • M. Şenel, Turkiye Jeoloji Haritası/Geological Map of Turkey, scale 1:500,000. Maden Tetkik Arama Genel Müdürlüğü, Ankara, 2002.
  • İ. Seymen, Kaman dolayında Kırşehir Masifinin jeolojisi. Doçentlik Tezi, İ.T.Ü. Maden Fakültesi, İstanbul, 1982.
  • A. Özcan, M. C. Göncüoğlu, N. Turan, Ş. Uysal, K. Şentük and A. Işık, Late Paleozoik evolution of the Kütahya-Bolkardağ Belt. METU Journal of Pure and Applied Sciences, 21 (1-3), 211-220, 1988.
  • A. Uygun, Tuzgölü havzasının jeolojisi, evaporit oluşumları ve hidrokarbon olanakları. İç Anadolu’nun Jeolojisi Sempozyumu, T.J.K. 35. Bilimsel ve Teknik Kurultayı Bildiriler Kitabı, pp. 66-71, Ankara, 1981.
  • E. Özsayin, T. A. Çiner, F. B. Rojay, R. K. Dirik, D. Melnick, D. Fernández-Blanco, G. Bertotti, T. F. Schildgen, Y. Garcin, M. R. Strecker and M. Sudo, Plio-Quaternary extensional tectonics of the Central Anatolian Plateau: A case study from the Tuz Gölü Basin, Turkey. Turkish Journal of Earth Sciences, 22 (5), 691-714, 2013.
  • A. Kürçer and Y. E. Gökten, Paleoseismological three dimensional virtual photography method; A case study: Bağlarkayası-2010 trench, Tuz Gölü Fault Zone, Central Anatolia, Turkey. In E. Sharkov (Ed.), Tectonics - Recent Advances, IntechOpen, 2012.
  • A. Aydemir and A. Ateş, Structural interpretation of the Tuzgolu and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data. Earth Planets and Space, 58 (8), 951-961, 2006.
  • E. Anders and N. Grevesse, Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53 (1), 197-214, 1989. http://dx.doi.org/10.1016/0016-7037(89)90286-X.
  • S. R. Taylor and S. M. McLennan, The continental crust: Its composition and evolution. Blackwell Scientific Publications, Oxford, 1985.
  • R. L. Folk, Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas, 1974.
  • H. Vital and K. Stattegger, Major and trace elements of stream sediments from the lowermost Amazon River. Chemical geology, 168 (1–2), 151-168, 2000. http://dx.doi.org/10.1016/S0009-2541(00)00191-1.
  • F. J. Pettijohn, P. E. Potter and R. Siever, Sand and sandstone. Springer US, New York, 1972.
  • R. L. Cullers, T. Barrett, R. Carlson and B. Robinson, Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A. Chemical geology, 63 (3–4), 275-297, 1987. http://dx.doi.org/10.1016/ 0009-2541(87)90167-7.
  • H. Elderfield and M. J. Greaves, The rare earth elements in seawater. Nature, 296, 214, 1982.https://doi.org/10.1038/296214a0
  • D. Z. Piper, Rare earth elements in the sedimentary cycle: A summary. Chemical geology, 14 (4), 285-304, 1974. https://doi.org/10.1016/0009-2541(74)90066-7.
  • C. R. German and H. Elderfield, Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica et Cosmochimica Acta, 53 (10), 2561-2571, 1989. https://doi.org/10.1016/0016-7037(89)90128-2.
  • W. G. Powell, P. A. Johnston and C. J. Collom, Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 201 (3), 249-268, 2003. https://doi.org/10.1016/S0031-0182(03)00612-6.
  • S. M. McLennan, S. Hemming, D. K. McDaniel and G. N. Hanson, Geochemical approaches to sedimentation, provenance and tectonics. In M. J. Johnsson, A. Basu (Eds.), Geological Society of America Special Papers, Processes Controlling the Composition of Clastic Sediments, pp. 21-40, 1993.
  • W. R. Dickinson and C. A. Suczek, Plate tectonics and sandstone compositions. AAPG Bulletin, 63 (12), 2164-2182, 1979.
  • S. Critelli, P. E. Rumelhart and R. V. Ingersoll, Petrofacies and Provenance of the Puente Formation (Middle to Upper Miocene), Los-Angeles Basin, Southern California - Implications for Rapid Uplift and Accumulation Rates. Journal of Sedimentary Research Section a-Sedimentary Petrology and Processes, 65 (4), 656-667, 1995.
  • H. Dokuz, Çankırı-Çorum Havzası Oligosen kumtaşlarının petrografisi ve provenansı, Yozgat. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (3), 1089-1094, 2018. https://doi.org/ 10.28948/ngumuh.502251
  • K. Hayashi, H. Fujisawa, H. D. Holland and H. Ohmoto, Geochemistry of similar to 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61 (19), 4115-4137, 1997. https://doi.org/10.1016/S0016-7037(97)00214-7.
  • L. Zhou, Z. Wang, W. Gao, K. Zhang, H. Li and L. Zhang, Provenance and tectonic setting of the Lower Cambrian Niutitang formation shales in the Yangtze platform, South China: Implications for depositional setting of shales. Geochemistry, 79 (2), 384-398, 2019. https://doi.org/10.1016/j.chemer.2019.05.001.
  • R. L. Cullers, Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical geology, 191 (4), 305-327, 2002. http://dx.doi.org/10.1016/S0009-2541(02)00133-X.
  • B. P. Roser and R. J. Korsch, Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology, 67 (1–2), 119-139, 1988. http://dx.doi.org/10.1016/0009-2541(88)90010-1.
  • P. A. Floyd and B. E. Leveridge, Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144, 531-542, 1987. https://doi.org/ 10.1144/gsjgs.144.4.0531
  • D. Bal Akkoca and Z. Baytaşoğlu, The mineralogy and geochemistry of Neogene sediments from eastern Turkey, southeast of Arapgir (Malatya). Turkish Journal of Earth Sciences, 22 (4), 645-663, 2013. https://doi.org/10.3906/yer-1202-13
  • D. J. Wronkiewicz and K. C. Condie, Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53 (7), 1537-1549, 1989. http://dx.doi.org/ 10.1016/0016-7037(89)90236-6.
  • J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma and S. Ramasamy, Geochemistry of Sandstones from the Upper Miocene Kudankulam Formation, Southern India: Implications for Provenance, Weathering, and Tectonic Setting. Journal of Sedimentary Research, 74 (2), 285-297, 2004. https://doi.org/10.1306/ 082803740285.
  • L. Sun, H. Gui and S. Chen, Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: Implications for provenance, weathering and tectonic setting. Chemie der Erde - Geochemistry, 72 (3), 253-260, 2012. https://doi.org/10.1016/j.chemer.2011.11.006.
  • Z. W. Wang, J. Wang, X. G. Fu, W. Z. Zhan, J. S. Armstrong-Altrin, F. Yu, X. L. Feng, C. Y. Song and S. Q. Zeng, Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting. Journal of Asian Earth Sciences, 160, 118-135, 2018. https://doi.org/10.1016/j.jseaes.2018.04.022.
  • R. L. Cullers and J. L. Graf, Rare earth elements in igneous rocks of the continental crust: predominantly basic and ultrabasic rocks. In Rare earth element geochemistry, pp. 237-274, Elsevier Amsterdam, 1984.
  • S. R. Taylor and S. M. McLennan, Chemical composition and element distribution in the Earth's crust. In R. A. Meyers (Ed.), Encyclopedia of Physical Science and Technology (Third Edition), pp. 697-719, Academic Press, New York, 2003.
  • R. L. Cullers and V. N. Podkovyrov, The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research, 117 (3–4), 157-183, 2002. http://dx.doi.org/10.1016/S0301-9268(02)00079-7.
  • K. C. Condie, Chemical composition and evolution of the upper continental crust : Contrasting results from surface samples and shales. Chemical geology, 104, 1-37, 1993.
  • R. L. Cullers, The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51 (3), 181-203, 2000. http://dx.doi.org/10.1016/S0024-4937(99)00063-8.
  • S. M. McLennan, S. R. Taylor, M. T. McCulloch and J. B. Maynard, Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54 (7), 2015-2050, 1990. http://dx.doi.org/10.1016/0016-7037(90)90269-Q.
  • R. L. Cullers, The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical geology, 123 (1–4), 107-131, 1995. http://dx.doi.org/10.1016/0009-2541(95)00050-V.
  • R. L. Cullers, A. Basu and L. J. Suttner, Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical geology, 70 (4), 335-348, 1988. http://dx.doi.org/10.1016/0009-2541(88)90123-4.
  • M. M. Karadağ, Geochemistry, provenance and tectonic setting of the Late Cambrian–Early Ordovician Seydişehir Formation in the Çaltepe and Fele areas, SE Turkey. Geochemistry, 74 (2), 205-224, 2014. https://doi.org/10.1016/j.chemer.2013.07.002.
  • D. Boztuğ and Y. Harlavan, K–Ar ages of granitoids unravel the stages of Neo-Tethyan convergence in the eastern Pontides and central Anatolia, Turkey. International Journal of Earth Sciences, 97 (3), 585-599, 2008. https://doi.org/10.1007/s00531-007-0176-0.
  • D. Boztuğ, R. C. Jonckheere, M. Heizler, L. Ratschbacher, Y. Harlavan and M. Tichomirova, Timing of post-obduction granitoids from intrusion through cooling to exhumation in central Anatolia, Turkey. Tectonophysics, 473 (1), 223-233, 2009. https://doi.org/10.1016/j.tecto.2008.05.035.
  • S. Köksal, R. L. Romer, M. C. Göncüoglu and F. Toksoy-Köksal, Timing of post-collisional H-type to A-type granitic magmatism: U–Pb titanite ages from the Alpine central Anatolian granitoids (Turkey). International Journal of Earth Sciences, 93 (6), 974-989, 2004. https://doi.org/10.1007/s00531-004-0432-5.
  • İ. Kuşcu, G. Gençalioğlu Kuşcu, L. D. Meinert and P. A. Floyd, Tectonic setting and petrogenesis of the Çelebi granitoid, (Kırıkkale-Turkey) and comparison with world skarn granitoids. Journal of Geochemical Exploration, 76 (3), 175-194, 2002. https://doi.org/10.1016/S0375-6742(02)00254-6.
  • K. Koçak, Mineralogy, geochemistry, and Sr–Nd isotopes of the Cretaceous leucogranite from Karamadazı (Kayseri), central Turkey: implications for their sources and geological setting. Canadian Journal of Earth Sciences, 45 (8), 949-968, 2008. https://doi.org/10.1139/E08-040
  • J. S. Armstrong-Altrin, Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57 (11-12), 1446-1461, 2015. https://doi.org/10.1080/00206814.2014.936055
  • Q. Du, Z. Han, X. Shen, C. Han, Z. Song, L. Gao, M. Han and W. Zhong, Geochronology and geochemistry of Permo-Triassic sandstones in eastern Jilin Province (NE China): Implications for final closure of the Paleo-Asian Ocean. Geoscience Frontiers, 10 (2), 683-704, 2019. https://doi.org/10.1016/j.gsf.2018.03.014.
  • M. R. Bhatia, Plate tectonics and geochemical composition of sandstones. The Journal of geology, 91 (6), 611-627, 1983.
  • B. P. Roser and R. J. Korsch, Determination of tectonic setting of sandstone - mudstone suits using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635-650, 1986. citeulike-article-id:5332564.
  • M. R. Bhatia and K. A. W. Crook, Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92 (2), 181-193, 1986. https://doi.org/10.1007/BF00375292
  • S. P. Verma and J. S. Armstrong-Altrin, Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1-12, 2016. https://doi.org/10.1016/j.sedgeo. 2015.11.011
  • T. A. LaMaskin, R. J. Dorsey and J. D. Vervoort, Tectonic controls on mudrock geochemisry, Mesozoic rocks of eastern Oregon and western Idaho, USA: Implications for cordilleran tectonics. Journal of Sedimentary Research, 78 (12), 765-783, 2008.
There are 74 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Geological Engineering
Authors

Mehmet Yavuz Hüseyinca 0000-0003-3863-6170

Suaip Küpeli 0000-0002-3164-6811

Project Number 09101002
Publication Date January 14, 2022
Submission Date November 3, 2021
Acceptance Date December 27, 2021
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Hüseyinca, M. Y., & Küpeli, S. (2022). Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 157-169. https://doi.org/10.28948/ngumuh.1018818
AMA Hüseyinca MY, Küpeli S. Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia). NOHU J. Eng. Sci. January 2022;11(1):157-169. doi:10.28948/ngumuh.1018818
Chicago Hüseyinca, Mehmet Yavuz, and Suaip Küpeli. “Geochemistry of Upper Eocene-Oligocene Sandstones from Tuzgölü Basin (Central Anatolia)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 1 (January 2022): 157-69. https://doi.org/10.28948/ngumuh.1018818.
EndNote Hüseyinca MY, Küpeli S (January 1, 2022) Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 1 157–169.
IEEE M. Y. Hüseyinca and S. Küpeli, “Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia)”, NOHU J. Eng. Sci., vol. 11, no. 1, pp. 157–169, 2022, doi: 10.28948/ngumuh.1018818.
ISNAD Hüseyinca, Mehmet Yavuz - Küpeli, Suaip. “Geochemistry of Upper Eocene-Oligocene Sandstones from Tuzgölü Basin (Central Anatolia)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/1 (January 2022), 157-169. https://doi.org/10.28948/ngumuh.1018818.
JAMA Hüseyinca MY, Küpeli S. Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia). NOHU J. Eng. Sci. 2022;11:157–169.
MLA Hüseyinca, Mehmet Yavuz and Suaip Küpeli. “Geochemistry of Upper Eocene-Oligocene Sandstones from Tuzgölü Basin (Central Anatolia)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 1, 2022, pp. 157-69, doi:10.28948/ngumuh.1018818.
Vancouver Hüseyinca MY, Küpeli S. Geochemistry of Upper Eocene-Oligocene sandstones from Tuzgölü Basin (Central Anatolia). NOHU J. Eng. Sci. 2022;11(1):157-69.

23135