Research Article
BibTex RIS Cite

Landfill gas energy potential towards Turkey’s industrial electricity consumption

Year 2022, Volume: 11 Issue: 1, 84 - 91, 14.01.2022
https://doi.org/10.28948/ngumuh.879785

Abstract

In this study, an estimation study had been made on the rate of meeting industrial electricity consumption of electricity generation based on methane gas obtained from municipal solid waste in Turkey. While making estimates, curve fitting method written in Matrix laboratory (Matlab) environment, holt linear trend method and excel forecast sheet application were used. As a result of the studies, the lowest Mean absolute error percentage (MAPE) values were obtained as 0.07% for the population, 16.6% for municipal solid waste (MSW) and 5.9% for industrial electricity consumption (IEC). Landfill Gas Emissions Model (LandGEM) v.3.02 was used to calculate the amount of methane gas to be generated over the years. Considering the methane gas data calculated by the model, the amount of electrical energy that could be obtained between 2017-2025 was estimated. According to the values obtained, it was estimated that the electrical energy that could be obtained from methane gas in 2025 would be 2155.55 GWh, and with this generation value, 1.464% of IEC could be met.

References

  • S. AlzateArias, B. Restrepo-Cuestas and A. Jaramillo-Duque, Electricity generation potential from solid waste in three Colombian municipalities. TecnoLóicas, 21(42), 111-128, 2018.
  • B. Baran, Atıksu arıtma tesislerinden elde edilen hidroelektrik üretiminin Türkiye mesken elektrik talebini karşılama oranı. Akademik Platform, Mühendislik ve Fen Bilimleri Dergisi, 8(1), 139-145, 2020. https://doi.org/10.21541/apjes.503355.
  • C. Görmüş, Türkiye'deki hayvan gübrelerinin biyogaz enerji potansiyelinin belirlenmesi, Master Thesis, Tekirdağ Namık Kemal University. 2018.
  • A.V.S. Melaré, S.M. González, K. Faceli and V. Casadei, Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Management, 59, 567-584, 2017. https://doi.org/10.1016/j.wasman.2016.10.045.
  • G. Gök, Estimation of methane generation and energy potential of Niğde landfill site using first order mathematical modelling approaches. Journal of Engineering Sciences and Design, 7(1), 126-135, 2019. https://doi.org/10.21923/jesd.405047.
  • N.J. Themelis and P.A. Ulluoa, Methane generation in landfills. Renewable Energy, 32, 1243-1257, 2007. https://doi.org/10.1016/j.renene.2006.04.020.
  • E.D. Güven, Ege Bölgesi’nde kentsel katı atık üretimi ve atığın metan gazı enerji potansiyelinin belirlenmesi. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 21(61), 311-322, 2019. https://doi.org/10.21205/deufmd.2019216130.
  • Kentsel Katı Atık Metan Gazı Enerji Elde Edilmesi, Sustainable Energy Africa (SEA), Waste to Energy: municipal landfill waste methane gas to energy implementation, Accessed 01 December 2019.
  • İ. Şentürk and B. Yıldırım, A Study on Estimating of the Landfill Gas Potential from Solid Waste Storage Area in Sivas, Turkey. Scientific Journal of Mehmet Akif Ersoy University, 3(2), 63-76, 2020.
  • D. Mboowa, S. Quereshi, C. Bhattacharjee and K. Tonny, S. Dutta, Qualitative determination of energy potential and methane generation from Municipal Solid Waste (MSW) in Dhanbad (India). Energy, 2017. doi: 10.1016/j.energy. 2017.02.009.
  • M.A. Rajaeifar, H. Ghanavati, B. Dashti, R. Heijungs, R, M. Aghbashlo and M. Tabatabaei. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. Renewable and Sustainable Energy Reviews, Elsevier, 79(C), 414-439, 2017. https://doi.org/10.1016/j.rser.2017.04.109.
  • D. Das, B.K. Majhi, S. Pal and T. Jash. Estimation of land-fill gas generation from municipal solid waste in Indian Cities. Energy Procedia, 90, 50–56, 2016. https://doi.org/10.1016/j.egypro.2016.11.169.
  • A. Yechiel and Y. Shevah. Optimization of energy generation using landfill biogas. Journal of Energy Storage, 7, 93-98, 2016. https://doi.org/10.1016/ j.est.2016.05.002.
  • N. Scarlat, V. Motola, J.F. Dallemand, F. Monforti-Ferrario and L. Mofor, Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269–1286, 2015. https://doi.org/10.1016/j.rser.2015.05.067.
  • B. Özer, A study on energy production and GHG mitigation potential from municipal solid waste of Edirne. Mugla Journal of Science and Technology, 4(2), 182-190, 2018. doi: 10.22531/muglajsci.447895.
  • H. Sarptaş, Assessment of landfill gas (LFG) energy potential based on estimates of LFG models. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 18, 491-501, 2016. doi: 10.21205/deufmd.2016185416.
  • D. Surroo and R. Mohee, Power generatıon from landfıll gas, 2nd International Conference on Environmental Engineering and Applications IPCBEE, 17, 237-241, 2011.
  • S. Fallahizadeha, M. Rahmatiniac, Z. Mohammadid, M. Vaezzadehe, A. Tajamirif and H. Soleimani, Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX, 6, 391–398, 2019. https://doi.org/10.1016/j.mex. 2019.02.013.
  • S.H. Tercan, A.F. Cabalar and G. Yaman, Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey. Journal of the Air&Waste Management Association, 912-918, 2015. https://doi.org/10.1080/10962247.2015.1036178.
  • A. Aydi. Energy recovery from a municipal solid waste (MSW) landfill gas: A Tunisian Case Study. Hydrolgy Current Research 3(4), 2012. doi: 10.4172/2157-7587.1000137.
  • M. Gökçek, Waste to energy: Exploitation of landfill gas in micro-turbines, Omer Halisdemir University Journal of Engineering Sciences, 6(2), 710-716, 2017. https://doi.org/10.28948/ngumuh.341993.
  • S. Yi, Y.C. Jang and A.K. An, Potential for energy recovery and greenhouse gas reduction through waste-to-energy technologies. Journal of Cleaner Production, 176, 503-511, 2018. https://doi.org/10.1016/ j.jclepro.2017.12.103.
  • B.R. Saragih, S.R.H. Siregar and A. Surjosatyo, Evaluation of waste potential in TPST Bantargebang Through Modified Triangular Method, E3S Web of Conferences 67(02040), 1-4, 2018.
  • Eğri Uydurma, https://tektasi.net › wp-content › uploads › 2019/02 › Curve-Fitting, Accessed 25 September 2019.
  • TÜİK-1, Türkiye'nin nüfus ve atık su miktarı verileri. www.tuik.gov.tr, Accessed 4 November 2019.
  • Tahmin Sayfası-1, Tahmin Sayfası. https://www.dummies.com/software/microsoft-office/excel/how-to-create-forecast-worksheets-in-excel-2019/ Accessed 27 November 2019.
  • Tahmin Sayfası-2, Tahmin Sayfası. https://www. myonlinetraininghub.com, Accessed 27 November 2019.
  • Tahmin Sayfası-3, Tahmin Sayfası. https://www. k2e.com/tech-tips/excel-forecast-sheet/, Accessed 10 October 2019.
  • Y.K. Benli ve A. Yıldız, Altın fiyatının zaman serisi yöntemleri ve yapay sinir ağları ile öngörüsü. Dumlupınar University Journal of Social Sciences, 42, 213-224, 2014.
  • TÜİK-2, Elektrik üretimi ve enerji kaynaklarına göre dağılımı. http://www.tuik.gov.tr/UstMenu.do?metod =temelist, Accessed 22 October 2019.
  • W. Uddin, B. Khan, N. Shaukat, M. Majid, G. Mujtaba, A. Mehmood, S.M. Ali, U. Younas, M. Anwar and A.M. Almesha, Biogas potential for electric power generation in Pakistan: A survey. Renewable and Sustainable Energy Reviews, 54, 25–33, 2016. https://doi.org/10.1016/j.rser.2015.09.083.
  • P. Mostbauer, L. Lombardi, T. Olivieri and S. Lenz. Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash. Waste Management, 34, 125-133, 2014. https://doi.org/10.1016/j.wasman.2013.09.016.
  • H. Şenol, E.A. Elibol., Ü. Açıkel and M. Şenol, Primary biomass sources for biogas production in Turkey. BEU Journal of Science, 6(2), 81-92, 2017.
  • EPA, Basic information about landfill gas. https://www.epa.gov/lmop/basic-information-about-landfill-gas, Accessed 15 October 2019.
  • Global Methane İnitiative, 4. Landfill Gas Energy Utilization Technologies, International Best Practices Guide for LFGE Projects, 33-50, 2012.
  • S. Türkmen, S. Özbek ve M. Karakuş, Türkiye’de elektrik tüketimi ve ekonomik büyüme arasındaki ilişki: Ampirik bir analiz. Kahramanmaraş Sütçü İmam Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(2), 129-142, 2018.
  • C. Yıldırım ve Ö. Dağdemir, Türkiye’de ekonomik büyüme ve elektrik tüketimi ilişkisi. Sakarya İktisat Dergisi, 7(4), 57-76, 2018.
  • TÜİK-3, Türkiye elektrik tüketim verisi. www.tuik.gov.tr, Accessed 10 October 2019.
  • M.V. Eren, M.A. Polat and H.İ. Aydın, Analysis of relationship between electricity consumption and economic growth with structural breaks tests in Turkey. Akademik Bakış Uluslararası Hakemli Sosyal Bilimler E-Dergisi, 56, 275-289, 2016.

Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli

Year 2022, Volume: 11 Issue: 1, 84 - 91, 14.01.2022
https://doi.org/10.28948/ngumuh.879785

Abstract

Bu çalışmada Türkiye’deki kentsel katı atıklardan elde edilen metan gazına bağlı elektrik üretiminin endüstriyel elektrik tüketimini karşılama oranı üzerine bir tahmin çalışması yapılmıştır. Tahminler yapılırken matrix laboratory (Matlab) ortamında yazılan eğri uydurma yöntemi, holt linear trend yöntemi ve excel tahmin sayfası uygulaması kullanılmıştır. Çalışmalar sonucunda en düşük ortalama mutlak hata yüzdesi (MAPE) değerleri nüfus için % 0.07, kentsel katı atık (KKA) için % 16.6 ve endüstriyel elektrik tüketimi (EET) için % 5.9 olarak elde edilmiştir. Yıllar içinde oluşacak metan gazı miktarını hesaplamak için ise Landfill Gas Emissions Model (LandGEM) v.3.02 kullanılmıştır. Model tarafından hesaplanan metan gazı verileri dikkate alınarak 2017-2025 yılları arasında elde edilebilecek elektrik enerjisi miktarının tahmini yapılmıştır. Elde edilen değerlere göre 2025 yılında metan gazından elde edilebilecek elektrik enerjisinin 2155.55 GWh olacağı, bu üretim değeri ile EET’nin % 1.464’lük kısmının karşılanabileceği tahmin edilmiştir.

References

  • S. AlzateArias, B. Restrepo-Cuestas and A. Jaramillo-Duque, Electricity generation potential from solid waste in three Colombian municipalities. TecnoLóicas, 21(42), 111-128, 2018.
  • B. Baran, Atıksu arıtma tesislerinden elde edilen hidroelektrik üretiminin Türkiye mesken elektrik talebini karşılama oranı. Akademik Platform, Mühendislik ve Fen Bilimleri Dergisi, 8(1), 139-145, 2020. https://doi.org/10.21541/apjes.503355.
  • C. Görmüş, Türkiye'deki hayvan gübrelerinin biyogaz enerji potansiyelinin belirlenmesi, Master Thesis, Tekirdağ Namık Kemal University. 2018.
  • A.V.S. Melaré, S.M. González, K. Faceli and V. Casadei, Technologies and decision support systems to aid solid-waste management: a systematic review. Waste Management, 59, 567-584, 2017. https://doi.org/10.1016/j.wasman.2016.10.045.
  • G. Gök, Estimation of methane generation and energy potential of Niğde landfill site using first order mathematical modelling approaches. Journal of Engineering Sciences and Design, 7(1), 126-135, 2019. https://doi.org/10.21923/jesd.405047.
  • N.J. Themelis and P.A. Ulluoa, Methane generation in landfills. Renewable Energy, 32, 1243-1257, 2007. https://doi.org/10.1016/j.renene.2006.04.020.
  • E.D. Güven, Ege Bölgesi’nde kentsel katı atık üretimi ve atığın metan gazı enerji potansiyelinin belirlenmesi. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 21(61), 311-322, 2019. https://doi.org/10.21205/deufmd.2019216130.
  • Kentsel Katı Atık Metan Gazı Enerji Elde Edilmesi, Sustainable Energy Africa (SEA), Waste to Energy: municipal landfill waste methane gas to energy implementation, Accessed 01 December 2019.
  • İ. Şentürk and B. Yıldırım, A Study on Estimating of the Landfill Gas Potential from Solid Waste Storage Area in Sivas, Turkey. Scientific Journal of Mehmet Akif Ersoy University, 3(2), 63-76, 2020.
  • D. Mboowa, S. Quereshi, C. Bhattacharjee and K. Tonny, S. Dutta, Qualitative determination of energy potential and methane generation from Municipal Solid Waste (MSW) in Dhanbad (India). Energy, 2017. doi: 10.1016/j.energy. 2017.02.009.
  • M.A. Rajaeifar, H. Ghanavati, B. Dashti, R. Heijungs, R, M. Aghbashlo and M. Tabatabaei. Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review. Renewable and Sustainable Energy Reviews, Elsevier, 79(C), 414-439, 2017. https://doi.org/10.1016/j.rser.2017.04.109.
  • D. Das, B.K. Majhi, S. Pal and T. Jash. Estimation of land-fill gas generation from municipal solid waste in Indian Cities. Energy Procedia, 90, 50–56, 2016. https://doi.org/10.1016/j.egypro.2016.11.169.
  • A. Yechiel and Y. Shevah. Optimization of energy generation using landfill biogas. Journal of Energy Storage, 7, 93-98, 2016. https://doi.org/10.1016/ j.est.2016.05.002.
  • N. Scarlat, V. Motola, J.F. Dallemand, F. Monforti-Ferrario and L. Mofor, Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269–1286, 2015. https://doi.org/10.1016/j.rser.2015.05.067.
  • B. Özer, A study on energy production and GHG mitigation potential from municipal solid waste of Edirne. Mugla Journal of Science and Technology, 4(2), 182-190, 2018. doi: 10.22531/muglajsci.447895.
  • H. Sarptaş, Assessment of landfill gas (LFG) energy potential based on estimates of LFG models. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering, 18, 491-501, 2016. doi: 10.21205/deufmd.2016185416.
  • D. Surroo and R. Mohee, Power generatıon from landfıll gas, 2nd International Conference on Environmental Engineering and Applications IPCBEE, 17, 237-241, 2011.
  • S. Fallahizadeha, M. Rahmatiniac, Z. Mohammadid, M. Vaezzadehe, A. Tajamirif and H. Soleimani, Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX, 6, 391–398, 2019. https://doi.org/10.1016/j.mex. 2019.02.013.
  • S.H. Tercan, A.F. Cabalar and G. Yaman, Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey. Journal of the Air&Waste Management Association, 912-918, 2015. https://doi.org/10.1080/10962247.2015.1036178.
  • A. Aydi. Energy recovery from a municipal solid waste (MSW) landfill gas: A Tunisian Case Study. Hydrolgy Current Research 3(4), 2012. doi: 10.4172/2157-7587.1000137.
  • M. Gökçek, Waste to energy: Exploitation of landfill gas in micro-turbines, Omer Halisdemir University Journal of Engineering Sciences, 6(2), 710-716, 2017. https://doi.org/10.28948/ngumuh.341993.
  • S. Yi, Y.C. Jang and A.K. An, Potential for energy recovery and greenhouse gas reduction through waste-to-energy technologies. Journal of Cleaner Production, 176, 503-511, 2018. https://doi.org/10.1016/ j.jclepro.2017.12.103.
  • B.R. Saragih, S.R.H. Siregar and A. Surjosatyo, Evaluation of waste potential in TPST Bantargebang Through Modified Triangular Method, E3S Web of Conferences 67(02040), 1-4, 2018.
  • Eğri Uydurma, https://tektasi.net › wp-content › uploads › 2019/02 › Curve-Fitting, Accessed 25 September 2019.
  • TÜİK-1, Türkiye'nin nüfus ve atık su miktarı verileri. www.tuik.gov.tr, Accessed 4 November 2019.
  • Tahmin Sayfası-1, Tahmin Sayfası. https://www.dummies.com/software/microsoft-office/excel/how-to-create-forecast-worksheets-in-excel-2019/ Accessed 27 November 2019.
  • Tahmin Sayfası-2, Tahmin Sayfası. https://www. myonlinetraininghub.com, Accessed 27 November 2019.
  • Tahmin Sayfası-3, Tahmin Sayfası. https://www. k2e.com/tech-tips/excel-forecast-sheet/, Accessed 10 October 2019.
  • Y.K. Benli ve A. Yıldız, Altın fiyatının zaman serisi yöntemleri ve yapay sinir ağları ile öngörüsü. Dumlupınar University Journal of Social Sciences, 42, 213-224, 2014.
  • TÜİK-2, Elektrik üretimi ve enerji kaynaklarına göre dağılımı. http://www.tuik.gov.tr/UstMenu.do?metod =temelist, Accessed 22 October 2019.
  • W. Uddin, B. Khan, N. Shaukat, M. Majid, G. Mujtaba, A. Mehmood, S.M. Ali, U. Younas, M. Anwar and A.M. Almesha, Biogas potential for electric power generation in Pakistan: A survey. Renewable and Sustainable Energy Reviews, 54, 25–33, 2016. https://doi.org/10.1016/j.rser.2015.09.083.
  • P. Mostbauer, L. Lombardi, T. Olivieri and S. Lenz. Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash. Waste Management, 34, 125-133, 2014. https://doi.org/10.1016/j.wasman.2013.09.016.
  • H. Şenol, E.A. Elibol., Ü. Açıkel and M. Şenol, Primary biomass sources for biogas production in Turkey. BEU Journal of Science, 6(2), 81-92, 2017.
  • EPA, Basic information about landfill gas. https://www.epa.gov/lmop/basic-information-about-landfill-gas, Accessed 15 October 2019.
  • Global Methane İnitiative, 4. Landfill Gas Energy Utilization Technologies, International Best Practices Guide for LFGE Projects, 33-50, 2012.
  • S. Türkmen, S. Özbek ve M. Karakuş, Türkiye’de elektrik tüketimi ve ekonomik büyüme arasındaki ilişki: Ampirik bir analiz. Kahramanmaraş Sütçü İmam Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(2), 129-142, 2018.
  • C. Yıldırım ve Ö. Dağdemir, Türkiye’de ekonomik büyüme ve elektrik tüketimi ilişkisi. Sakarya İktisat Dergisi, 7(4), 57-76, 2018.
  • TÜİK-3, Türkiye elektrik tüketim verisi. www.tuik.gov.tr, Accessed 10 October 2019.
  • M.V. Eren, M.A. Polat and H.İ. Aydın, Analysis of relationship between electricity consumption and economic growth with structural breaks tests in Turkey. Akademik Bakış Uluslararası Hakemli Sosyal Bilimler E-Dergisi, 56, 275-289, 2016.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Electrical and Electronics Engineering
Authors

Burhan Baran 0000-0001-6394-412X

Publication Date January 14, 2022
Submission Date February 13, 2021
Acceptance Date September 25, 2021
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Baran, B. (2022). Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 84-91. https://doi.org/10.28948/ngumuh.879785
AMA Baran B. Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli. NOHU J. Eng. Sci. January 2022;11(1):84-91. doi:10.28948/ngumuh.879785
Chicago Baran, Burhan. “Türkiye’nin endüstriyel Elektrik tüketimine yönelik Depolama Gazı Enerji Potansiyeli”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 1 (January 2022): 84-91. https://doi.org/10.28948/ngumuh.879785.
EndNote Baran B (January 1, 2022) Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 1 84–91.
IEEE B. Baran, “Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli”, NOHU J. Eng. Sci., vol. 11, no. 1, pp. 84–91, 2022, doi: 10.28948/ngumuh.879785.
ISNAD Baran, Burhan. “Türkiye’nin endüstriyel Elektrik tüketimine yönelik Depolama Gazı Enerji Potansiyeli”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/1 (January 2022), 84-91. https://doi.org/10.28948/ngumuh.879785.
JAMA Baran B. Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli. NOHU J. Eng. Sci. 2022;11:84–91.
MLA Baran, Burhan. “Türkiye’nin endüstriyel Elektrik tüketimine yönelik Depolama Gazı Enerji Potansiyeli”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 1, 2022, pp. 84-91, doi:10.28948/ngumuh.879785.
Vancouver Baran B. Türkiye’nin endüstriyel elektrik tüketimine yönelik depolama gazı enerji potansiyeli. NOHU J. Eng. Sci. 2022;11(1):84-91.

download