Research Article
BibTex RIS Cite

Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması

Year 2022, Volume: 11 Issue: 1, 198 - 206, 14.01.2022
https://doi.org/10.28948/ngumuh.984658

Abstract

Nanoteknoloji ve malzeme bilimi üzerine yapılan araştırmalarda, daha üstün mekanik, termal ve fiziksel özelliklere sahip polimer matrisli malzemeler geliştirilmektedir. Bununla birlikte, epoksi matris içerisine nano boyutta ve farklı özellikte çeşitli partiküller katılarak malzemelere istenilen özellikler kazandırılmaya çalışılmaktadır. Bu kapsamda, matris içerisine eklenen bor bileşikleri ile üretilen polimerik malzemeler, malzeme bilimine yeni bir bakış açısı getirmiştir. Yapılan çalışmada, hegzagonal bor karbür (B4C) nanopartiküllerinin ve modifikasyon işleminin yapısal yapıştırıcıların mekanik özelliklerini nasıl etkilediği incelenmiştir. Bu amaçla, ilk olarak B4C nanopartiküllerinin yüzeyi 3-(glycidyloxypropyl) trimethoxysilane bileşiği kullanılarak modifiye edilmiştir. Araldite 2011 yapısal yapıştırıcısı içerisine ağırlıkça %1, %2 ve %3 oranlarında modifiye edilmiş ve modifiye edilmemiş B4C nanopartikülleri katılarak, yeni yapısal yapıştırıcılar üretilmiştir. Üretilen nanopartikül katkılı yapıştırıcıların mekanik özelliklerini ve modifikasyonun önemini belirlemek için çekme testi ve dinamik mekanik analiz (DMA) yapılmıştır. Deneylerden elde edilen sonuçlar karşılaştırıldığında, modifiye edilmiş B4C nanopartikül katkılı yapısal yapıştırıcıların mekanik özelliklerinin (çekme dayanımı, elastisite modülü, depolama modülü) iyileştiği gözlemlenirken, modifiye edilmemiş B4C katkısıyla üretilen yapıştırıcılarda ise mekanik özelliklerin azaldığı gözlemlenmiştir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Project Number

119M939

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 119M939 Numaralı proje ile desteklenmiştir. Yazarlar, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na desteklerinden dolayı teşekkür etmektedirler.

References

  • F.L. Jin, X. Li and S.J. Park, Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11,2015.https://doi.org/10.1016/j.jiec.2015.03.026.
  • M.O.D. Reis, L.F.M. da Silva and R.J.C. Carbas, Mechanical characterization of a modern epoxy adhesive for automotive industry. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 340, 2019. https://doi.org/10.1007/s40430-019-1844-2.
  • Ş. Yazman, M. Uyaner F. Karabörk and A. Akdemir, Effects of nano reinforcing/matrix interaction on chemical, thermal and mechanical properties of epoxy nanocomposites. Journal of Composite Materials, 2021. https://doi:10.1177/00219983211037059.
  • A. Kumar, K. Sharma and A.R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science, 54, 5992–6026, 2019. https://doi.org/10.1007/s10853-018-03244-3.
  • M.K. Shukla and K. Sharma, Effect of carbon nanofillers on the mechanical and interfacial properties of epoxy based nanocomposites: a review. Polymer Science, Series A, 61, 439-460, 2019. https://doi.org/10.1134/S0965545X19040096.
  • W. Hou, Y. Gao, J. Wang, D.J. Blackwood and S. Teo, Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 23, 100883, 2020. https://doi.org/10.1016/j.mtcomm.2019.100883.
  • L. Guadagno, M. Sarno, U. Vietri, M. Raimondo, C. Cirillo and P. Clambelli, Graphene-based structural adhesive to enhance adhesion performance. RSC Advances, 5, 27874–27886, 2015. https://doi.org/10.1039/C5RA00819K.
  • Z. Jia, X. Feng and Y. Zou, Graphene Reinforced Epoxy Adhesive For Fracture Resistance. Composites Part B: Engineering, 155, 457-462, 2018. https://doi.org/10.1016/j.compositesb.2018.09.093.
  • H. Khoramishad and M. Khakzad, Toughening epoxy adhesives with multi-walled carbon nanotubes. The Journal of Adhesion, 94, 15-29, 2018. https://doi.org/10.1080/00218464.2016.1224184.
  • S.N. Surip and A.H. Ismail, A Comparative Study on the Mechanical Properties of Clay Modified Epoxy Adhesive by Using Different Clay Types. Key Engineering Materials, 780, 43-47, 2018. https://doi.org/10.4028/www.scientific.net/KEM.780.43.
  • P.K. Guchhait, S. Pradhan and K.D. Kumar, Influence of Nanoclay on the Morphology, Adhesive and Mechanical Properties of Polysulfide Modified Epoxy Resin. Polymers and Polymer Composites, 18, 123-131, 2010. https://doi.org/10.1177/096739111001800301.
  • N.Z. Khalil, M.F. Johanne and M. Ishak, Influence of Al2O3 nanoreinforcement on the adhesion and thermomechanical properties for epoxy adhesive. Composites Part B: Engineering, 172, 9-15, 2019. https://doi.org/10.1016/j.compositesb.2019.05.007.
  • A. Kausar, Fullerene Nanofiller Reinforced Epoxy Nanocomposites—Developments, Progress and Challenges. Materials Research Innovations, 25, 175-185, 2020. https://doi.org/10.1080/14328917.2020.1748794.
  • S. Han, Q. Meng, S. Araby, T. Liu and M. Demiral, Mechanical and electrical properties of graphene and carbon nanotubereinforced epoxy adhesives: Experimental and numerical analysis. Composites Part A: Applied Science and Manufacturing, 120, 116-126, 2019. https://doi.org/10.1016/j.compositesa.2019.02.027.
  • M.A. Rafiee, F. Yavari, J. Rafiee abd N. Koratkar, Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. Journal of Nanoparticle Research, 13, 733-737, 2011. https://doi.org/10.1007/s11051-010-0073-5.
  • D. Bazrgari, F. Moztarzadeh, A.S. Sabbagh-Alvani, M. Rasoulianboroujeni, M. Tahriri and L. Tayebi, Mechanical properties and tribological performance of epoxy/Al2O3nanocomposite. Ceramics International, 44, 1220-1224, 2018. https://doi.org/10.1016/j.ceramint.2017.10.068.
  • I.A. Akpinar, K. Gültekin, S. Akpınar, A. Gürses and A. Özel, An experimental study on composite adhesives reinforced with different types of organo-clays. The Journal of Adhesion, 94 124-142, 2018. https://doi.org/10.1080/00218464.2016.1255606.
  • W. Meng, Y. Huang, Y. Fu, Z. Wang, and C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C, 2(47), 10049–10061, 2014. https://doi.org/10.1039/c4tc01998a.
  • D. Gosset, Basic properties of boron carbide. Comprehensive Nuclear Materials, 7, 539–553, 2020. https://doi.org/10.1016/b978-0-12-803581-8.11638-8.
  • H. Hemmatian, M. R. Zamani, J.E. Jam, Investigation of crack resistance in epoxy/boron nitride nanotube nanocomposites based on multi-scale method. Journal of Theoretical and Applied Mechanics (Poland), 57(1), 207–219, 2019. https://doi.org/10.15632/jtam-pl.57.1.207.
  • G. Navaneethakrishnan, T. Karthikeyan, S. Saravanan and V. Selvam, V, Influence of boron nitride on morphological, mechanical, thermal and wear characteristics of epoxy nanocomposites. Materials Research Innovations, 24(5), 257–262, 2020. https://doi.org/10.1080/14328917.2019.1641346.
  • S. Bhatia, S. Angra, and S. Khan, A review on mechanical and tribological characterization of boron carbide reinforced epoxy composite. Advanced Composite Materials, 30, 307-337, 2021. https://doi.org/10.1080/09243046.2020.1759482.
  • S. Durairaj, P. Chandramohan, R. Rajesh, Evaluation of mechanical properties of B4C filled glass-epoxy composites. International Journal of ChemTech Research, 8, 1997–1981, 2015.
  • K. Gültekin, G. Uğuz and A. Özel, Improvements of the structural, thermal, and mechanical properties of structural adhesive with functionalized boron nitride nanoparticles. Journal of Applied Polymer Science, 138, 50491, 2021. https://doi.org/10.1002/app.50491.
  • H. Yan, Y. Tang, J. Su, and X. Yang, Enhanced thermal-mechanical properties of polymer composites with hybrid boron nitride nanofillers. Applied Physics A: Materials Science and Processing, 114(2), 331–337, 2014. https://doi.org/10.1007/s00339-013-8149-6.
  • K. Gültekin, G. Uğuz, Y. Topcu and A. Özel, Structural , thermal and mechanical properties of silanized boron carbide doped epoxy nanocomposites. Journal of Applied Polymer Science, 138, 51244, 2021. https://doi.org/10.1002/app.51244.
  • J. Wang, Y. He, Z. Xie, C. Chen, Q. Yang, C. Zhang, B. Wang, Y. Zhan, and T. Zhao, Functionalized boron carbide for enhancement of anticorrosion performance of epoxy resin. Polymers for Advanced Technologies, 29(2), 758–766, 2018. https://doi.org/10.1002/pat.4181.
  • TS EN ISO 527-1, Plastikler-Çekme özelliklerinin tayini-Bölüm 1: Genel prensipler. Türk Standartları Enstitüsü, Ankara, 2012.
  • ASTM D4065 – 20, Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures, ASTM International, West Conshohocken, PA, 2020. https://doi.org/10.1520/D4065-20.
  • TS EN ISO 527-2, Plastikler-Çekme özelliklerinin tayini-Bölüm 2: Kalıplama ve ekstrüzyon plastikleri için deney şartları. Türk Standartları Enstitüsü, Ankara, 2012.
  • C.W. Macosko, Rheology: Principles, measurements and applications. Wiley-VCH, New York, 1994.
  • M.E. Brown, Introduction thermal analysis: Techniques and applications. Chapman and Hall, London, 1988.

Comparison of the effect of modified and unmodified boron carbide (B4C) nanoparticles on the mechanical properties of structural adhesives

Year 2022, Volume: 11 Issue: 1, 198 - 206, 14.01.2022
https://doi.org/10.28948/ngumuh.984658

Abstract

Polymer matrix materials with superior mechanical, thermal and physical properties are being developed in research on nanotechnology and materials science. In addition, it is tried to gain the desired properties to the materials by adding various particles of nano size and different properties into the epoxy matrix. In this context, polymeric materials produced with boron compounds added to the matrix have brought a new perspective to materials science. In this study, it was investigated how hexagonal boron carbide (B4C) nanoparticles and modification process affect the mechanical properties of structural adhesives. For this purpose, firstly, the surface of B4C nanoparticles was modified using 3-(glycidyloxypropyl) trimethoxysilane compound. New structural adhesives were produced by adding 1%, 2% and 3% by weight modified and unmodified B4C nanoparticles into Araldite 2011 structural adhesive. Tensile test and Dynamic Mechanical Analysis (DMA) were performed to determine the mechanical properties of the produced nanoparticles doped adhesives and the importance of modification. When the results obtained from the experiments were compared, it was observed that the mechanical properties (tensile strength, elasticity modulus, storage modulus) of modified B4C nanoparticle doped structural adhesives improved, while the mechanical properties were decreased in the adhesives produced with the unmodified B4C nanoparticles additive.

Project Number

119M939

References

  • F.L. Jin, X. Li and S.J. Park, Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11,2015.https://doi.org/10.1016/j.jiec.2015.03.026.
  • M.O.D. Reis, L.F.M. da Silva and R.J.C. Carbas, Mechanical characterization of a modern epoxy adhesive for automotive industry. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 340, 2019. https://doi.org/10.1007/s40430-019-1844-2.
  • Ş. Yazman, M. Uyaner F. Karabörk and A. Akdemir, Effects of nano reinforcing/matrix interaction on chemical, thermal and mechanical properties of epoxy nanocomposites. Journal of Composite Materials, 2021. https://doi:10.1177/00219983211037059.
  • A. Kumar, K. Sharma and A.R. Dixit, A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. Journal of Materials Science, 54, 5992–6026, 2019. https://doi.org/10.1007/s10853-018-03244-3.
  • M.K. Shukla and K. Sharma, Effect of carbon nanofillers on the mechanical and interfacial properties of epoxy based nanocomposites: a review. Polymer Science, Series A, 61, 439-460, 2019. https://doi.org/10.1134/S0965545X19040096.
  • W. Hou, Y. Gao, J. Wang, D.J. Blackwood and S. Teo, Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 23, 100883, 2020. https://doi.org/10.1016/j.mtcomm.2019.100883.
  • L. Guadagno, M. Sarno, U. Vietri, M. Raimondo, C. Cirillo and P. Clambelli, Graphene-based structural adhesive to enhance adhesion performance. RSC Advances, 5, 27874–27886, 2015. https://doi.org/10.1039/C5RA00819K.
  • Z. Jia, X. Feng and Y. Zou, Graphene Reinforced Epoxy Adhesive For Fracture Resistance. Composites Part B: Engineering, 155, 457-462, 2018. https://doi.org/10.1016/j.compositesb.2018.09.093.
  • H. Khoramishad and M. Khakzad, Toughening epoxy adhesives with multi-walled carbon nanotubes. The Journal of Adhesion, 94, 15-29, 2018. https://doi.org/10.1080/00218464.2016.1224184.
  • S.N. Surip and A.H. Ismail, A Comparative Study on the Mechanical Properties of Clay Modified Epoxy Adhesive by Using Different Clay Types. Key Engineering Materials, 780, 43-47, 2018. https://doi.org/10.4028/www.scientific.net/KEM.780.43.
  • P.K. Guchhait, S. Pradhan and K.D. Kumar, Influence of Nanoclay on the Morphology, Adhesive and Mechanical Properties of Polysulfide Modified Epoxy Resin. Polymers and Polymer Composites, 18, 123-131, 2010. https://doi.org/10.1177/096739111001800301.
  • N.Z. Khalil, M.F. Johanne and M. Ishak, Influence of Al2O3 nanoreinforcement on the adhesion and thermomechanical properties for epoxy adhesive. Composites Part B: Engineering, 172, 9-15, 2019. https://doi.org/10.1016/j.compositesb.2019.05.007.
  • A. Kausar, Fullerene Nanofiller Reinforced Epoxy Nanocomposites—Developments, Progress and Challenges. Materials Research Innovations, 25, 175-185, 2020. https://doi.org/10.1080/14328917.2020.1748794.
  • S. Han, Q. Meng, S. Araby, T. Liu and M. Demiral, Mechanical and electrical properties of graphene and carbon nanotubereinforced epoxy adhesives: Experimental and numerical analysis. Composites Part A: Applied Science and Manufacturing, 120, 116-126, 2019. https://doi.org/10.1016/j.compositesa.2019.02.027.
  • M.A. Rafiee, F. Yavari, J. Rafiee abd N. Koratkar, Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading. Journal of Nanoparticle Research, 13, 733-737, 2011. https://doi.org/10.1007/s11051-010-0073-5.
  • D. Bazrgari, F. Moztarzadeh, A.S. Sabbagh-Alvani, M. Rasoulianboroujeni, M. Tahriri and L. Tayebi, Mechanical properties and tribological performance of epoxy/Al2O3nanocomposite. Ceramics International, 44, 1220-1224, 2018. https://doi.org/10.1016/j.ceramint.2017.10.068.
  • I.A. Akpinar, K. Gültekin, S. Akpınar, A. Gürses and A. Özel, An experimental study on composite adhesives reinforced with different types of organo-clays. The Journal of Adhesion, 94 124-142, 2018. https://doi.org/10.1080/00218464.2016.1255606.
  • W. Meng, Y. Huang, Y. Fu, Z. Wang, and C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets. Journal of Materials Chemistry C, 2(47), 10049–10061, 2014. https://doi.org/10.1039/c4tc01998a.
  • D. Gosset, Basic properties of boron carbide. Comprehensive Nuclear Materials, 7, 539–553, 2020. https://doi.org/10.1016/b978-0-12-803581-8.11638-8.
  • H. Hemmatian, M. R. Zamani, J.E. Jam, Investigation of crack resistance in epoxy/boron nitride nanotube nanocomposites based on multi-scale method. Journal of Theoretical and Applied Mechanics (Poland), 57(1), 207–219, 2019. https://doi.org/10.15632/jtam-pl.57.1.207.
  • G. Navaneethakrishnan, T. Karthikeyan, S. Saravanan and V. Selvam, V, Influence of boron nitride on morphological, mechanical, thermal and wear characteristics of epoxy nanocomposites. Materials Research Innovations, 24(5), 257–262, 2020. https://doi.org/10.1080/14328917.2019.1641346.
  • S. Bhatia, S. Angra, and S. Khan, A review on mechanical and tribological characterization of boron carbide reinforced epoxy composite. Advanced Composite Materials, 30, 307-337, 2021. https://doi.org/10.1080/09243046.2020.1759482.
  • S. Durairaj, P. Chandramohan, R. Rajesh, Evaluation of mechanical properties of B4C filled glass-epoxy composites. International Journal of ChemTech Research, 8, 1997–1981, 2015.
  • K. Gültekin, G. Uğuz and A. Özel, Improvements of the structural, thermal, and mechanical properties of structural adhesive with functionalized boron nitride nanoparticles. Journal of Applied Polymer Science, 138, 50491, 2021. https://doi.org/10.1002/app.50491.
  • H. Yan, Y. Tang, J. Su, and X. Yang, Enhanced thermal-mechanical properties of polymer composites with hybrid boron nitride nanofillers. Applied Physics A: Materials Science and Processing, 114(2), 331–337, 2014. https://doi.org/10.1007/s00339-013-8149-6.
  • K. Gültekin, G. Uğuz, Y. Topcu and A. Özel, Structural , thermal and mechanical properties of silanized boron carbide doped epoxy nanocomposites. Journal of Applied Polymer Science, 138, 51244, 2021. https://doi.org/10.1002/app.51244.
  • J. Wang, Y. He, Z. Xie, C. Chen, Q. Yang, C. Zhang, B. Wang, Y. Zhan, and T. Zhao, Functionalized boron carbide for enhancement of anticorrosion performance of epoxy resin. Polymers for Advanced Technologies, 29(2), 758–766, 2018. https://doi.org/10.1002/pat.4181.
  • TS EN ISO 527-1, Plastikler-Çekme özelliklerinin tayini-Bölüm 1: Genel prensipler. Türk Standartları Enstitüsü, Ankara, 2012.
  • ASTM D4065 – 20, Standard Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures, ASTM International, West Conshohocken, PA, 2020. https://doi.org/10.1520/D4065-20.
  • TS EN ISO 527-2, Plastikler-Çekme özelliklerinin tayini-Bölüm 2: Kalıplama ve ekstrüzyon plastikleri için deney şartları. Türk Standartları Enstitüsü, Ankara, 2012.
  • C.W. Macosko, Rheology: Principles, measurements and applications. Wiley-VCH, New York, 1994.
  • M.E. Brown, Introduction thermal analysis: Techniques and applications. Chapman and Hall, London, 1988.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Kürşat Gültekin 0000-0002-6790-6822

Project Number 119M939
Publication Date January 14, 2022
Submission Date August 19, 2021
Acceptance Date October 12, 2021
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

APA Gültekin, K. (2022). Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 198-206. https://doi.org/10.28948/ngumuh.984658
AMA Gültekin K. Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması. NOHU J. Eng. Sci. January 2022;11(1):198-206. doi:10.28948/ngumuh.984658
Chicago Gültekin, Kürşat. “Modifiye Edilmiş Ve Modifiye Edilmemiş Bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların Mekanik özellikleri üzerine Etkisinin karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 1 (January 2022): 198-206. https://doi.org/10.28948/ngumuh.984658.
EndNote Gültekin K (January 1, 2022) Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 1 198–206.
IEEE K. Gültekin, “Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması”, NOHU J. Eng. Sci., vol. 11, no. 1, pp. 198–206, 2022, doi: 10.28948/ngumuh.984658.
ISNAD Gültekin, Kürşat. “Modifiye Edilmiş Ve Modifiye Edilmemiş Bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların Mekanik özellikleri üzerine Etkisinin karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/1 (January 2022), 198-206. https://doi.org/10.28948/ngumuh.984658.
JAMA Gültekin K. Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması. NOHU J. Eng. Sci. 2022;11:198–206.
MLA Gültekin, Kürşat. “Modifiye Edilmiş Ve Modifiye Edilmemiş Bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların Mekanik özellikleri üzerine Etkisinin karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 1, 2022, pp. 198-06, doi:10.28948/ngumuh.984658.
Vancouver Gültekin K. Modifiye edilmiş ve modifiye edilmemiş bor karbür (B4C) nanopartiküllerinin yapısal yapıştırıcıların mekanik özellikleri üzerine etkisinin karşılaştırılması. NOHU J. Eng. Sci. 2022;11(1):198-206.

download