Research Article
BibTex RIS Cite

Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları

Year 2022, Volume: 11 Issue: 3, 557 - 566, 18.07.2022
https://doi.org/10.28948/ngumuh.1091070

Abstract

Dünya çapında ekonomik ve çevresel maliyetine rağmen şişelenmiş sulara olan ilgi artmaktadır. Şişelenmiş sulara erişim gücü az olan kesimler ise şehirlerde bulunan tatlı su çeşmelerinden içme suyu ihtiyaçlarını karşılamaya çalışmaktadırlar. Bu çalışmada Konya’da satılan şişelenmiş sulardan 24 adet doğal kaynak suyu, 4 adet doğal mineralli su ve 28 adet tatlı su çeşmelerinden alınan numunelerde başlıca dezenfeksiyon yan ürünlerinden olan trihalometan (THM) (kloroform, bromodiklorometan, klorodibromo-met an, bromoform) bileşiklerinin varlığı araştırılmıştır. Piyasadan temin edilen 28 adet şişelenmiş suda THM bileşikleri dedeksiyon limitinin altında tespit edilmiştir. Tatlı su çeşmelerinden alınan 28 adet numunede ise bromoform hariç diğer THM bileşiklerinin varlığı tespit edilmiştir. Kloroform bileşiği 43.73 µg/L olarak en yüksek konsantrasyon da tespit edilen THM olmuştur. Bromodiklorometan bileşiği ise kloroform bileşiğinden sonra en sık tespit edilen bileşik olmuştur ve maksimum 5.37 µg/L konsantrasyonunda tespit edilmiştir. Toplam THM konsantrasyonlarına bakıldığında, İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik’te verilen toplam THM’ler için 100 µg/L olan kalite standartlarını aşmadığı tespit edilmiştir.

References

  • T. Karanfil, S.W. Krasner, P. Westerhoff and Y. Xie, In Recent Advances in Disinfection By-Products; ACS Symposium Series. American Chemical Society: Washington, DC, 2015.
  • V. Eroğlu, Su Tasfiyesi. Çevre ve Orman Bakanlığı Yayınları, Türkiye, 2008.
  • S. Chowdhury, M.J. Rodriguez, R. Sadiq and J. Serodes, Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks. Water Research, 45 (1), 337-347, 2012. https://doi.org/10.101 6/j.watres.2010.08.002.
  • A.R. Pardakhti, G.R.N. Bidhendi, A. Torabian, A. Karbassi and M. Yunesian, Comparative cancer risk assessment of THMs in drinking water from well water sources and surface water sources. Environmental Monitoring and Assessment, 179, 499-507, 2011. https ://doi.org/10.1007/ s10661-010-1752-5.
  • S. D. Richardson, Tackling unknown disinfection by-products: Lessons learned. Journal of Hazardous Materials Letters, 2, 100041, 2021. https://doi.org/ 10.1016/ j.hazl.2021.10004.
  • S.M. Gordon, M.C. Brinkman, D.L. Ashley, B.C. Blount, C. Lyu, J. Masters and P.C. Singer, Changes in breath trihalomethane levels resulting from household water-use activities. Environmental Health Perspectives, 114, 514-521, 2006. https://doi.org/10.1289/ehp.8171.
  • M. Valdivia-Garcia, P. Weir, D.W. Graham and D. Werner, Predicted impact of climate change on trihalomethanes formation in drinking water treatment. 9:9967, Scientific Reports, 2019. https://doi.org/ 10.1038/s41598-019-46238-0.
  • J. Stanhope, K. McAuley, A. Cook and P. Weinstein, Estimating Trihalomethane Concentrations in Bottled Spring Water. Exposure and Health, 12:877-881, 2020, https://doi.org/10.1007/s12403-020-00350-z.
  • X. Zhang, C. Saini, C. Pohl and Y. Liu, Fast determination of nine haloacetic acids, bromate and dalapon in drinking water samples using ion chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1621 (2020) 461052, 2020. https://doi.org/10.1016/ j.chroma.2020.461052.
  • C.J. Mills, R.J. Bull, K.P. Cantor, J. Reif, S.E. Hrudey and P. Huston, Workshop report. Health risks of drinking water chlorination by-products: report of an expert working group. Chronic diseases in Canada, 19, 91-102, 1998.
  • S.H. Ewaid, A.M. Rabee and S.K. Al-Naseri, Carcinogenic risk assessment of trihalomethanes in major drinking water sources of Baghdad City. Water Resources, 45 (5), 803-812, 2018. https://doi.org/ 10.1134/S00978078 1 8050202.
  • D. Stalter, E. O’Malley, U. von Gunten and B.I. Escher, Mixture effects of drinking water disinfection by-products: implications for risk assessment. Environmental Science: Water Research & Technology, 6 (9), 2341-2351, 2020. https://doi.org /10.1039/C9EW00988D.
  • E.D. Wagner and M.J. Plewa, CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review. Journal of Environmental Sciences, 58, 64-76, 2017. https://doi.org/10.1016/j.jes.2017.04 .021.
  • R. Mompremier, O.A. Fuentes Mariles, J.E. Becerril Bravo and K. Ghebremichael, Study of the variation of haloacetic acids in a simulated water distribution network. Water Supply, 19 (1), 88-96, 2019. https://doi.org/10.2166/ ws.2018.055.
  • L. Kurajica, M.U. Bosnjak, M.N. Stankov, A.S. Kinsela, J. Stiglic, D.T. Waite and K. Capak, Disinfection by-products in Croatian drinking water supplies with special emphasis on the water supply network in the city of Zagreb. Journal of Environmental Management, 276, 111360, 2020. https://doi.org/ 10.1016/j.jenv man. 2020.111360.
  • D. Stefan, N. Erdelyi, B. Izsak, G. Zaray and M. Vargha, Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination. Microchemical Journal, 149, 104008, 2019. https:// doi.org /10.1016/j.microc.2019.104008.
  • S. Dobaradaran, E.S. Fard, A. Tekle-Rottering, M. Keshtkar, V.N. Karbasdehi, M. Abtahi, R. Gholamnia and R. Saeedi, Age-sex specific and cause-specific health risk and burden of disease induced by exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) from drinking water: an assessment in four urban communities of Bushehr Province. Environmental Research, 182, 109062, 2020. https://doi.org/ 10.10 16/j.envres.2019.109062.
  • R.K. Padhi, S. Subramanian and K.K. Satpathy, Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2, and ClO3) during treatment of different source water with chlorine and chlorine dioxide. Chemosphere, 218, 540-550, 2019. https://doi.org/10.1016/j.chemosphere.2018 .11.100.
  • R. Hao, Y. Zhang, T. Du, L. Yang, A.S. Adeleye and Y. Li, Effect of water chemistry on disinfection by-product formation in the complex surface water system. Chemosphere, 172, 384-391, 2017. https://doi.org/10.1016/ j.chemosphere.2016.12.034.
  • S. Abbas, I. Hashmi, M.S.U. Rehman, I.A. Qazi, M.A. Awan, and H. Nasir, Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan. Journal of Water and Health, 13 (1), 270-284, 2014. https://doi.org 10.2166/wh.2014.096.
  • F. Al-Otoum, M.A. Al-Ghouti, T.A. Ahmed, M. Abu-Dieyeh and M. Ali, Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): occurrence in drinking water in Qatar. Chemosphere, 164, 64-656, 2016. https://doi.org/10.1016/j.chemosp here.2016.09.008.
  • D. Baytak, A. Sofuoglu, F. Inal and S.C. Sofuoglu, Seasonal variation in drinking water concentrations of disinfection by-products in Izmir and associated human health risks. Science of The Total Environment, 407 286-296, 2008. https://doi.org/10.1016/j.scitotenv.20 08 .08.019.
  • M. E. Aydın, A. Tor, G. Kara ve S. Yıldız, Konya Yeraltısuyunda Dezenfeksiyon Yan Ürünleri. Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi Dergisi., 20, 4, 2005.
  • N. Ates, S.S. Kaplan, E. Sahinkaya, M. Kitis, F. B. Dilek ve U. Yetis, Occurrence of disinfection by-products in low DOC surface waters in Turkey. Journal of Hazardous Materials 142, 526–534, 2007. https:// doi.org/10.1016/ j.jhazmat.2006.08.076.
  • B. Tokmak Cangir, G. Çapar, F. B. Dilek ve Ü. Yetiş, Ankara içme suyu dağıtım şebekesinde trihalometanlar. Çevre, Bilim ve Teknoloji, 1,3, 39-46, 2003.
  • A. Ikem, Measurement of volatile organic compounds in bottled and tap waters by purge and trap GC–MS: Are drinking water types different?. Journal of Food Composition and Analysis, 23, 70-77, 2010. https:// doi.org/ 10.1016/j.jfca.2009.05.005.
  • Genel yapı ve rakamsal büyüklük .https://suder.org.tr/ambalajli-su/istatistik/, Accessed 18 October 2021.
  • M. Garfí, E. Cadena, D. Sanchez-Ramos and I. Ferrera, Life cycle assessment of drinking water: Comparing conventionalwater treatment, reverse osmosis and mineral water in glass and plastic bottles. Journal of Cleaner Production, 137, 20, 997-1003, 2016. https://doi.org/10.10 16/j.jclepro.2016.07.218.
  • R. Geyer, J.R. Jambeck and K.L. Law, Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782, 2017. https://doi.org/10.1126/ sciadv.17007 82.
  • C.M. Villanueva, B. Gagniere, C. Monfort, M.J. Nieuwenhuijsen and S. Cordier, Sources of variability in levels and exposure to trihalomethanes. Environmental Research, 103:211-220, 2007. https://doi.org/10.1016/ j.envres.2006 .11.001.
  • N. Casajuana and S. Lacorte, Presence and release of phthalicesters and other endocrine disrupting compounds in drinking water. Chromatographia, 57, 649-655, 2003. https://doi.org/10.1007/BF02491744.
  • J. Nawrocki, A. Dabrowska and A. Borcz, Investigation ofcarbonyl compounds in bottled waters from Poland. Water Research, 36, 4893-4901, 2002. https://doi.o rg/10.1016/ s0043-1354(02)00201-4.
  • S.V. Leivadara, A.D. Nikolaou, and T.D. Lekkas, Analytical methods determination of organic compounds in bottled waters. Food Chemistry, 108, 277-286, 2008. https://doi.org/10.1016/j.foodchem.200 7.10.031.
  • Q. Luo, Z. Liu, H. Yin, Z. Dang, P. Wu, N., Zhu, Z. Lin and Y. Liu, Review Migration and potential risk of trace phthalates in bottled water: A global situation. Water Research 147, 362-372, 2018. https://doi.org/10.1016/ j.wat res. 2018.10.002.
  • S.M. Praveena and S. Laohaprapanon, Quality assessment for methodological aspects of microplastics analysis in bottled water – A critical review, Food Control. 130, 108285, 2021. https://doi.org/10.1016/j.foodcont.2021. 108 285.
  • D. Karamanis, K. Stamoulis and K.G. Ioannides, Natural radionuclides and heavy metals in bottled water in Greece. Desalination, 213, 90-97, 2007. https://doi.org/ 10.1016/ j.desal.2006.03.604.
  • M.R. Khan, M.S. Samdani, M. Azam and M. Ouladsmane, UPLC-ESI/MS analysis of disinfection by-products (perchlorate, bromate, nitrate, nitrite and sulfite) in micro-filtered drinking water obtained from spring, well and tap water (desalinated) sources. Journal of King Saud University- Science, 33, 101408, 2021. https://doi.org/10.10 16/j.jksus.2021.101408.
  • N. Iszatt, M.J. Nieuwenhuijsen, P. Nelson, P. Elliott and M.B. Toledano, Water consumption and use, trihalomethane exposure, and the risk of hypospadias. Pediatrics, 127: 389–397, 2011. https://doi.org/10.154 2/peds.2009-3356.
  • E. Patelarou, S. Kargaki, E.G. Stephanou, M. Nieuwenhuijsen, P. Sourtzi, E. Garcia, L. Chatzi, A. Koutis and M. Kogevinas, Exposure to brominated trihalomethanes in drinking water and reproductive outcomes. Occupational and Environmental Medicine, 68:438-445, 2011. https://doi.org/10.1136/oem.201 0.056150.
  • J.M. Wright, P.A. Murphy, M.J. Nieuwenhuijsen and D.A. Savitz, The impact of water consumption, point-of-use filtration and exposure categorization on exposure misclassification of ingested drinking water contaminants. Science of the Total Environment, 366: 65–73, 2006. https://doi.org/10.1016/j.scitotenv.2005.0 8.010.
  • Tatlı su kaynakları. https://www.koski.gov.tr/sayfa/tatli-su-kaynaklari, Accessed 18 October 2021.
  • W. Elshorbagy and M. Abdulkarim, Chlorination byproducts in drinking water produced from desalination in United Arab Emirates. Environmental Monitoring and Assessment, 123:313–31, 2006. https://doi.org/10.1007/s10 661-006-9199-4.
  • H.F. Al-Mudhaf, F.A. Alsharifi and A.-S.I. Abu-Shady, A survey of organic contaminants in household and bottled drinking waters in Kuwait. Science of the total environment, 407, 1658-1668, 2009. https://doi.org/10. 1016/j.scitotenv.2 008.10.057.
  • M. Genisoglu, C. Ergi-Kaytmaz and S.C. Sofuoglu, Multi-route-Multi-pathway exposure to trihalomethanes and associated cumulative health risks with response and dose addition. Journal of Environmental Management, 233, 823-831, 2019. https://doi.org/10.1016/j.jenvman. 2018.10.0 09.

Trihalomethane concentrations in bottled water and fresh water taps

Year 2022, Volume: 11 Issue: 3, 557 - 566, 18.07.2022
https://doi.org/10.28948/ngumuh.1091070

Abstract

Despite the worldwide economic and environmental cost, interest in bottled water has been increasing. Those who have little access to bottled water try to meet their drinking water needs from fresh water fountains in cities. In this study, the presence of trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane, bromo form) compounds, which are among the main disinfection by-products, were investigated in the samples taken from 24 natural spring waters, 4 natural mineral waters and 28 fresh water fountains sold in Konya. THM compounds were detected below the detection limit in 28 bottles of water supplied from the market. Except for bromoform, the presence of other THM compounds was detected in 28 samples taken from fresh water fountains. The chloroform compound was THM with the highest concentration of 43.73 µg/L. Bromodichloromethane compound was the most frequently detected compound after chloroform compound and was detected at a maximum concentration of 5.37 µg/L. Considering the total THM concentrations, it was determined that they did not exceed the quality standards of 100 µg/L for total THMs given in the Regulation on Water Intended for Human Consumption.

References

  • T. Karanfil, S.W. Krasner, P. Westerhoff and Y. Xie, In Recent Advances in Disinfection By-Products; ACS Symposium Series. American Chemical Society: Washington, DC, 2015.
  • V. Eroğlu, Su Tasfiyesi. Çevre ve Orman Bakanlığı Yayınları, Türkiye, 2008.
  • S. Chowdhury, M.J. Rodriguez, R. Sadiq and J. Serodes, Modeling DBPs formation in drinking water in residential plumbing pipes and hot water tanks. Water Research, 45 (1), 337-347, 2012. https://doi.org/10.101 6/j.watres.2010.08.002.
  • A.R. Pardakhti, G.R.N. Bidhendi, A. Torabian, A. Karbassi and M. Yunesian, Comparative cancer risk assessment of THMs in drinking water from well water sources and surface water sources. Environmental Monitoring and Assessment, 179, 499-507, 2011. https ://doi.org/10.1007/ s10661-010-1752-5.
  • S. D. Richardson, Tackling unknown disinfection by-products: Lessons learned. Journal of Hazardous Materials Letters, 2, 100041, 2021. https://doi.org/ 10.1016/ j.hazl.2021.10004.
  • S.M. Gordon, M.C. Brinkman, D.L. Ashley, B.C. Blount, C. Lyu, J. Masters and P.C. Singer, Changes in breath trihalomethane levels resulting from household water-use activities. Environmental Health Perspectives, 114, 514-521, 2006. https://doi.org/10.1289/ehp.8171.
  • M. Valdivia-Garcia, P. Weir, D.W. Graham and D. Werner, Predicted impact of climate change on trihalomethanes formation in drinking water treatment. 9:9967, Scientific Reports, 2019. https://doi.org/ 10.1038/s41598-019-46238-0.
  • J. Stanhope, K. McAuley, A. Cook and P. Weinstein, Estimating Trihalomethane Concentrations in Bottled Spring Water. Exposure and Health, 12:877-881, 2020, https://doi.org/10.1007/s12403-020-00350-z.
  • X. Zhang, C. Saini, C. Pohl and Y. Liu, Fast determination of nine haloacetic acids, bromate and dalapon in drinking water samples using ion chromatography–electrospray tandem mass spectrometry. Journal of Chromatography A, 1621 (2020) 461052, 2020. https://doi.org/10.1016/ j.chroma.2020.461052.
  • C.J. Mills, R.J. Bull, K.P. Cantor, J. Reif, S.E. Hrudey and P. Huston, Workshop report. Health risks of drinking water chlorination by-products: report of an expert working group. Chronic diseases in Canada, 19, 91-102, 1998.
  • S.H. Ewaid, A.M. Rabee and S.K. Al-Naseri, Carcinogenic risk assessment of trihalomethanes in major drinking water sources of Baghdad City. Water Resources, 45 (5), 803-812, 2018. https://doi.org/ 10.1134/S00978078 1 8050202.
  • D. Stalter, E. O’Malley, U. von Gunten and B.I. Escher, Mixture effects of drinking water disinfection by-products: implications for risk assessment. Environmental Science: Water Research & Technology, 6 (9), 2341-2351, 2020. https://doi.org /10.1039/C9EW00988D.
  • E.D. Wagner and M.J. Plewa, CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: an updated review. Journal of Environmental Sciences, 58, 64-76, 2017. https://doi.org/10.1016/j.jes.2017.04 .021.
  • R. Mompremier, O.A. Fuentes Mariles, J.E. Becerril Bravo and K. Ghebremichael, Study of the variation of haloacetic acids in a simulated water distribution network. Water Supply, 19 (1), 88-96, 2019. https://doi.org/10.2166/ ws.2018.055.
  • L. Kurajica, M.U. Bosnjak, M.N. Stankov, A.S. Kinsela, J. Stiglic, D.T. Waite and K. Capak, Disinfection by-products in Croatian drinking water supplies with special emphasis on the water supply network in the city of Zagreb. Journal of Environmental Management, 276, 111360, 2020. https://doi.org/ 10.1016/j.jenv man. 2020.111360.
  • D. Stefan, N. Erdelyi, B. Izsak, G. Zaray and M. Vargha, Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination. Microchemical Journal, 149, 104008, 2019. https:// doi.org /10.1016/j.microc.2019.104008.
  • S. Dobaradaran, E.S. Fard, A. Tekle-Rottering, M. Keshtkar, V.N. Karbasdehi, M. Abtahi, R. Gholamnia and R. Saeedi, Age-sex specific and cause-specific health risk and burden of disease induced by exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) from drinking water: an assessment in four urban communities of Bushehr Province. Environmental Research, 182, 109062, 2020. https://doi.org/ 10.10 16/j.envres.2019.109062.
  • R.K. Padhi, S. Subramanian and K.K. Satpathy, Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2, and ClO3) during treatment of different source water with chlorine and chlorine dioxide. Chemosphere, 218, 540-550, 2019. https://doi.org/10.1016/j.chemosphere.2018 .11.100.
  • R. Hao, Y. Zhang, T. Du, L. Yang, A.S. Adeleye and Y. Li, Effect of water chemistry on disinfection by-product formation in the complex surface water system. Chemosphere, 172, 384-391, 2017. https://doi.org/10.1016/ j.chemosphere.2016.12.034.
  • S. Abbas, I. Hashmi, M.S.U. Rehman, I.A. Qazi, M.A. Awan, and H. Nasir, Monitoring of chlorination disinfection by-products and their associated health risks in drinking water of Pakistan. Journal of Water and Health, 13 (1), 270-284, 2014. https://doi.org 10.2166/wh.2014.096.
  • F. Al-Otoum, M.A. Al-Ghouti, T.A. Ahmed, M. Abu-Dieyeh and M. Ali, Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): occurrence in drinking water in Qatar. Chemosphere, 164, 64-656, 2016. https://doi.org/10.1016/j.chemosp here.2016.09.008.
  • D. Baytak, A. Sofuoglu, F. Inal and S.C. Sofuoglu, Seasonal variation in drinking water concentrations of disinfection by-products in Izmir and associated human health risks. Science of The Total Environment, 407 286-296, 2008. https://doi.org/10.1016/j.scitotenv.20 08 .08.019.
  • M. E. Aydın, A. Tor, G. Kara ve S. Yıldız, Konya Yeraltısuyunda Dezenfeksiyon Yan Ürünleri. Selçuk Üniversitesi, Mühendislik Mimarlık Fakültesi Dergisi., 20, 4, 2005.
  • N. Ates, S.S. Kaplan, E. Sahinkaya, M. Kitis, F. B. Dilek ve U. Yetis, Occurrence of disinfection by-products in low DOC surface waters in Turkey. Journal of Hazardous Materials 142, 526–534, 2007. https:// doi.org/10.1016/ j.jhazmat.2006.08.076.
  • B. Tokmak Cangir, G. Çapar, F. B. Dilek ve Ü. Yetiş, Ankara içme suyu dağıtım şebekesinde trihalometanlar. Çevre, Bilim ve Teknoloji, 1,3, 39-46, 2003.
  • A. Ikem, Measurement of volatile organic compounds in bottled and tap waters by purge and trap GC–MS: Are drinking water types different?. Journal of Food Composition and Analysis, 23, 70-77, 2010. https:// doi.org/ 10.1016/j.jfca.2009.05.005.
  • Genel yapı ve rakamsal büyüklük .https://suder.org.tr/ambalajli-su/istatistik/, Accessed 18 October 2021.
  • M. Garfí, E. Cadena, D. Sanchez-Ramos and I. Ferrera, Life cycle assessment of drinking water: Comparing conventionalwater treatment, reverse osmosis and mineral water in glass and plastic bottles. Journal of Cleaner Production, 137, 20, 997-1003, 2016. https://doi.org/10.10 16/j.jclepro.2016.07.218.
  • R. Geyer, J.R. Jambeck and K.L. Law, Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782, 2017. https://doi.org/10.1126/ sciadv.17007 82.
  • C.M. Villanueva, B. Gagniere, C. Monfort, M.J. Nieuwenhuijsen and S. Cordier, Sources of variability in levels and exposure to trihalomethanes. Environmental Research, 103:211-220, 2007. https://doi.org/10.1016/ j.envres.2006 .11.001.
  • N. Casajuana and S. Lacorte, Presence and release of phthalicesters and other endocrine disrupting compounds in drinking water. Chromatographia, 57, 649-655, 2003. https://doi.org/10.1007/BF02491744.
  • J. Nawrocki, A. Dabrowska and A. Borcz, Investigation ofcarbonyl compounds in bottled waters from Poland. Water Research, 36, 4893-4901, 2002. https://doi.o rg/10.1016/ s0043-1354(02)00201-4.
  • S.V. Leivadara, A.D. Nikolaou, and T.D. Lekkas, Analytical methods determination of organic compounds in bottled waters. Food Chemistry, 108, 277-286, 2008. https://doi.org/10.1016/j.foodchem.200 7.10.031.
  • Q. Luo, Z. Liu, H. Yin, Z. Dang, P. Wu, N., Zhu, Z. Lin and Y. Liu, Review Migration and potential risk of trace phthalates in bottled water: A global situation. Water Research 147, 362-372, 2018. https://doi.org/10.1016/ j.wat res. 2018.10.002.
  • S.M. Praveena and S. Laohaprapanon, Quality assessment for methodological aspects of microplastics analysis in bottled water – A critical review, Food Control. 130, 108285, 2021. https://doi.org/10.1016/j.foodcont.2021. 108 285.
  • D. Karamanis, K. Stamoulis and K.G. Ioannides, Natural radionuclides and heavy metals in bottled water in Greece. Desalination, 213, 90-97, 2007. https://doi.org/ 10.1016/ j.desal.2006.03.604.
  • M.R. Khan, M.S. Samdani, M. Azam and M. Ouladsmane, UPLC-ESI/MS analysis of disinfection by-products (perchlorate, bromate, nitrate, nitrite and sulfite) in micro-filtered drinking water obtained from spring, well and tap water (desalinated) sources. Journal of King Saud University- Science, 33, 101408, 2021. https://doi.org/10.10 16/j.jksus.2021.101408.
  • N. Iszatt, M.J. Nieuwenhuijsen, P. Nelson, P. Elliott and M.B. Toledano, Water consumption and use, trihalomethane exposure, and the risk of hypospadias. Pediatrics, 127: 389–397, 2011. https://doi.org/10.154 2/peds.2009-3356.
  • E. Patelarou, S. Kargaki, E.G. Stephanou, M. Nieuwenhuijsen, P. Sourtzi, E. Garcia, L. Chatzi, A. Koutis and M. Kogevinas, Exposure to brominated trihalomethanes in drinking water and reproductive outcomes. Occupational and Environmental Medicine, 68:438-445, 2011. https://doi.org/10.1136/oem.201 0.056150.
  • J.M. Wright, P.A. Murphy, M.J. Nieuwenhuijsen and D.A. Savitz, The impact of water consumption, point-of-use filtration and exposure categorization on exposure misclassification of ingested drinking water contaminants. Science of the Total Environment, 366: 65–73, 2006. https://doi.org/10.1016/j.scitotenv.2005.0 8.010.
  • Tatlı su kaynakları. https://www.koski.gov.tr/sayfa/tatli-su-kaynaklari, Accessed 18 October 2021.
  • W. Elshorbagy and M. Abdulkarim, Chlorination byproducts in drinking water produced from desalination in United Arab Emirates. Environmental Monitoring and Assessment, 123:313–31, 2006. https://doi.org/10.1007/s10 661-006-9199-4.
  • H.F. Al-Mudhaf, F.A. Alsharifi and A.-S.I. Abu-Shady, A survey of organic contaminants in household and bottled drinking waters in Kuwait. Science of the total environment, 407, 1658-1668, 2009. https://doi.org/10. 1016/j.scitotenv.2 008.10.057.
  • M. Genisoglu, C. Ergi-Kaytmaz and S.C. Sofuoglu, Multi-route-Multi-pathway exposure to trihalomethanes and associated cumulative health risks with response and dose addition. Journal of Environmental Management, 233, 823-831, 2019. https://doi.org/10.1016/j.jenvman. 2018.10.0 09.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Arzu Ulvi 0000-0001-7303-1869

Senar Aydın 0000-0002-0960-480X

Mehmet Emin Aydın 0000-0001-6665-198X

Publication Date July 18, 2022
Submission Date March 21, 2022
Acceptance Date June 14, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Ulvi, A., Aydın, S., & Aydın, M. E. (2022). Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 557-566. https://doi.org/10.28948/ngumuh.1091070
AMA Ulvi A, Aydın S, Aydın ME. Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları. NOHU J. Eng. Sci. July 2022;11(3):557-566. doi:10.28948/ngumuh.1091070
Chicago Ulvi, Arzu, Senar Aydın, and Mehmet Emin Aydın. “Şişelenmiş Sularda Ve Tatlı Su çeşmelerinde Trihalomentan Konsantrasyonları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 557-66. https://doi.org/10.28948/ngumuh.1091070.
EndNote Ulvi A, Aydın S, Aydın ME (July 1, 2022) Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 557–566.
IEEE A. Ulvi, S. Aydın, and M. E. Aydın, “Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 557–566, 2022, doi: 10.28948/ngumuh.1091070.
ISNAD Ulvi, Arzu et al. “Şişelenmiş Sularda Ve Tatlı Su çeşmelerinde Trihalomentan Konsantrasyonları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 557-566. https://doi.org/10.28948/ngumuh.1091070.
JAMA Ulvi A, Aydın S, Aydın ME. Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları. NOHU J. Eng. Sci. 2022;11:557–566.
MLA Ulvi, Arzu et al. “Şişelenmiş Sularda Ve Tatlı Su çeşmelerinde Trihalomentan Konsantrasyonları”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 557-66, doi:10.28948/ngumuh.1091070.
Vancouver Ulvi A, Aydın S, Aydın ME. Şişelenmiş sularda ve tatlı su çeşmelerinde trihalomentan konsantrasyonları. NOHU J. Eng. Sci. 2022;11(3):557-66.

download