Research Article
BibTex RIS Cite

Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings

Year 2022, Volume: 11 Issue: 3, 781 - 796, 18.07.2022
https://doi.org/10.28948/ngumuh.1091332

Abstract

In the study, firstly, heat transfer coefficients of windows were calculated according to the highest and lowest emissivity values. Secondly, monthly average solar radiation values were determined. The heat transfer coefficient calculated for double, triple and quadruple glass windows. Thirdly, the solar radiation in the south, north and east/west directions of the five climatic zones were multiplied by the shading factor, surface area and the solar energy factor of discrete buildings. Thus, the solar energy gain value for the heating period and solar energy losses for cooling period was determined. Finally, passive solar energy gains are calculated during the heating and cooling period for all climate zones. It has been calculated that in the fifth climatic zone in south direction, heat loss from windows with 0.05 emissivity can be provided with passive solar energy by 167.9% in double-glazed windows, 258.7% in triple-glazed windows and 349.1% in quadruple-glazed windows.

References

  • A. Kralj, M. Drev, M. Žnidaršic, B. Cerne, J. Hafner and B. P. Jelle, Investigations of 6-pane glazing: Properties and possibilities. Energy and Buildings, 190, 61–68, 2019. https://doi.org/10.1016 /j.enbuild. 2019.02.033
  • I. A. Gondal, , M. S. Athar and M. Khurram, Role of passive design and alternative energy in building energy optimization. Indoor and Built Environment, 30(2), 278-289, 2021. https://doi.org/10.1177/1420326X19887486
  • T. P. Obrecht, M. Premrov and V. Ž. Leskovar, Influence of the orientation on the optimal glazing size for passive houses in different European climates (for non-cardinal directions). Solar Energy, 189, 15–25, 2019. https://doi.org/10.1016/j.solener.2019.07.037
  • T. G. S. Lago, K. A. R. Ismail, F. A. M. Lino, Ventilated double glass window with reflective film: Modeling and assessment of performance. Solar Energy, 185, 72–88, 2019. https://doi.org/10.1016/j.solener.2019.04.047
  • T. Andersona and M. Luther, Designing for thermal comfort near a glazed exterior wall. Architectural Science Review, 55, 3:186–195, 2012. https://doi.org/10.1080/00038628.2012.697863
  • M. J. Alam and M. A. Islam, Effect of outdoor shading and window glazing on energy consumption of buildings in Bangladesh. Advances in Building Energy Research, 11, 2:180–192, 2017. https://doi.org/10.1080/17512549.2016.1190788
  • M. Arıcı and M. Kan, An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling. Renewable Energy 75:249-256, 2015. https://doi.org/10.1016/j.renene.2014.10.004
  • H. Li, K. Zhong, J. Yu, Y. Kang and Z. Zhai (John) Z, Solar energy absorption effect of buildings in hot summer and cold winter climate zone China. Solar Energy 198:519–528, 2020. https://doi.org/10.1016/j.solener.2020.01.047
  • J. Li, Q. Guan, H. Yang, Winter energy consumption in reading space of green library in cold regions. International Journal of Heat and Technology 36, 4:1256-1261, 2018. https://doi.org/10.18280/ijht.360413
  • I. Udrea and V. Badescu, Usage of solar shading devices to improve the thermal comfort in summer in a Romanian PassivHaus. Simulation:Transactions of the Society for Modeling and Simulation International, 96, 5:471–486,2020. https://doi.org/10.1177/0037549719887790
  • Y. Zhu, X. Fan, C. Wang and G. Sang, Analysis of heat transfer and thermal environment in a rural residential building for addressing energy poverty. Applied Sciences, 8, 2077:1-13, 2018. https://doi.org/10.3390/app8112077
  • C. Liu, Y. Wu, D. Li, T. Ma, and X. Liu, Investigations on thermal and optical performances of a glazing roof with PCM layer. Internatıonal journal of energy research International Journal of Energy Resources, 41:2138–2148,2017. https://doi.org/10.1002/er.3775
  • Y. Suna, K. Shanks, H. Baig, W. Zhang, X. Hao, Y. Li, B. He, R. Wilson, H. Liu, S. Sundaram, J. Zhang, L. Xie, T. Mallick and Y. Wu, Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: energy and daylight performance for different architecture designs. Applied Energy, 23:972–984, 2018. https://doi.org/10.1016/j.apenergy.2018.09.133
  • C. Baglivo, P. M. Congedo, M. D. Cataldo, L. D. Coluccia and D. D’Agostino, Envelope design optimization by thermal modelling of a building in a warm climate. Energies, 10, 1808:1-34, 2017. https://doi.org/10.3390/en10111808
  • I. R. Maestre, J. L. F. Blázquez, F. J. G. Gallero and J. D. M. Baladé. Effect of ,ky discretization for shading device calculation on building energy performance simulations. Energies 13, 138:1-14, 2020. https://doi.org/10.3390/en13061381
  • R. Khakian, M. Karimimoshaver, F. Aram, S. Z. Benis, A. Mosavi and A. R. Varkonyi-Koczy, Modeling nearly zero energy buildings for sustainable development in rural areas. Energies 13, 2593:1-19, 2020. https://doi.org/10.3390/en13102593
  • G. Zhang, Z. Wang, D. Li, Y. Wu and M. Arıcı, Seasonal thermal performance analysis of glazed window filled with paraffin including various nanoparticles. International Journal of Energy Resources, 44:3008–3019, 2020. https://doi.org/ 10.1002/er.5129
  • A. F. Altun and M. Kılıç, Influence of window parameters on the thermal performance of office rooms in different climate zones of Turkey. International Journal of Renewable Energy Research, 9:226-243, 2019.
  • M. Košir, T. Gostiša and Ž. Kristl, Influence of architectural building envelope characteristics on energy performance in Central European climatic conditions. Journal of Building Engineering, 15,278–288, 2018. https://doi.org/10.1016/j.jobe.2017.11.023
  • T. Ashrafian and N. Moazzen, The impact of glazing ratio and window configuration on occupants’ comfort and energy demand: The case study of a school building in Eskisehir. Turkey. Sustainable Cities and Society, 47:101483:1-14, 2019. https://doi.org/10.1016/j.scs.2019.101483
  • Q. Xuan, G. Li, Y. Lu, B. Zhao, X. Zhao, Y. Su, J. Ji and G. Pei, Design, optimization and performance analysis of an asymmetric concentrator-PV type window for the building south wall application. Solar Energy, 193:422–433,2019. https://doi.org/10.1016/ j.solener.2019.09.084
  • A. Sedaghat, F. Alkhatib, S. A. A. Oloomi, F. Sabri, H. Salem, S. Mohammad, J. Z. Waqar, M. A. Malayer and A. Negahi, Experimental study on the performance of solar window films in office buildings in Kuwait. Journal of Nanoparticle Research, 22, 85:1-17, 2020. https://doi.org/10.1007/s11051-020-04789-8
  • O. S. Asfour, Solar and shading potential of different configurations of building ıntegrated photovoltaics used as shading devices considering hot climatic conditions. Sustainability, 10,4373:1-15, 2018. https://doi.org/10.3390/su10124373
  • H. Manz and U. P. Menti, Energy performance of glazings in European climates. Renewable Energy, 37:226-232, 2012. https://doi.org/10.1016/j.renene. 2011.06.016
  • J. E. Frederick, Energy transfer through single- and double-pane windows subject to winter time environmental radiation. Journal of Building Physics, 38, 3:214–233, 2014. https://doi.org/10.1177/ 1744259113501628
  • J. Karlsson J and A. Roos, Evaluation of window energy rating models for different houses and European climates. Solar Energy, 76:71–77, 2004. https://doi.org/10.1016/j.solener.2003.08.016
  • S. S. Chandel and R. K. Aggarwal, Performance evaluation of a passive solar building in Western Himalayas. Renewable Energy, 33:2166–2173, 2008. https://doi.org/10.1016/j.renene.2008.01.008
  • S. Lu, Z. Li, Q. Zhao and F. Jiang, Modified calculation of solar heat gain coefficient in glazing façade buildings. Energy Procedia, 122, 151-156, 2017. https://doi.org/10.1016/j.egypro.2017.07.335
  • T. Kaasalainen, A. Makinen, T. Lehtinen, M. Moisio, J. Vinha, Architectural window design and energy efficiency: Impacts on heating, cooling and lighting needs in Finnish climates. Journal of Building Engineering, 27,100996:1-14, 2020. https://doi.org/ 10.1016/j.jobe.2019.100996
  • S. Jaber and S. Ajib, Thermal and economic windows design for different climate zones. Energy and Buildings, 43:3208–3215, 2011. https://doi.org/ 10.1016/j.enbuild.2011.08.019
  • J. S. Carlos and H. Corvacho, Evaluation of the thermal performance indices of a ventilated double window through experimental and analytical procedures: Uw-values. Renewable Energy, 63:747-754, 2014. https://doi.org/10.1016/j.renene.2013. 10.031
  • H. Karabay and M. Arıcı, Multiple pane window applications in various climatic regions of Turkey. Energy and Buildings, 45:67-71, 2012. https://doi.org/10.1016/j.enbuild.2011.10.020
  • O. Kon, Farklı yayıcılığa sahip iki, üç ve dört camlı pencerelere bağlı yakıt tüketimi. 1st International Conference on Advances in Mechanical and Mechatronics Engineering (ICAMMEN 2018), Ankara/Turkey 8-9 November 2018.
  • F. Al-Sibai, B. Hillemacher, M. Burghold and R. Kneer, Untersuchung zur dämmwirkung von wärmedämm-materialien mit ınfrarot reflektierenden oberflächen. Bauphysik, 35, 4, 225-234, 2013. https://doi.org/10.1002/bapi.201310071
  • O. Kon, Calculation of fuel consumption and emissions in buildings based on outdoor walls and windows using economic optimization. Journal of The Faculty of Engineering and Architecture of Gazi University, 33, 1:101-113, 2018. https://doi.org/ 10.17341/gazimmfd.406783
  • H. Kitagawa, T. Asawa, T. Kubota, A. R. Trihamdani, K. Sakurada and H. Mori, Optimization of window design for ventilative cooling with radiant floor cooling systems in the hot and humid climate of Indonesia. Building and Environment, 188, 107483:1-13, 2021. https://doi.org/10.1016/j.buildenv. 2020.107483
  • D. Hu and Y. Gu, A membrane reflector, polymer hybrid infrared emitter for better radiative cooling performance. Solar Energy Materials & Solar Cells, 234,111417:1-8, 2022. https://doi.org/10.1016/ j.solmat.2021.111417
  • A. Heydari, S. E. Sadati and M. R. Gharib, Effects of different window configurations on energy consumption in building: Optimization and economic analysis. Journal of Building Engineering, 35,102099:1-11, 2021. https://doi.org/10.1016/ j.jobe.2020.102099
  • L. Zhang, H. Zhang, X. Xu and L. Dong, Optimization method for prefabricated restroom envelope energy saving characteristics in hot summer and cold winter zone. Energy Exploration & Exploitation, 39,3:944–961, 2021. https://doi.org/10.1177/01445987 21993934
  • A. M. Raimundo, N. B. Saraiva, L. Dias Pereira and A. C. Rebelo, Market-Oriented cost-effectiveness and energy analysis of windows in Portugal. Energies, 14, 3720:1-19, 2021. https://doi.org/10.3390/en14133720
  • Y. Shi, X. Xi, Y. Zhang, H. Xu, J. Zhang and R. Zhang, Prediction and analysis of the thermal performance of composite vacuum glazing. Energies, 14,5769:1-15, 2021. https://doi.org/10.3390/en 14185769
  • Z. Wang, Q. Tian and J. Jia, Numerical study on performance optimization of an energy-saving insulated window. Sustainability, 13, 935:1-25, 2021. https://doi.org/10.3390/su13020935
  • Turkish Standard, TS 825, Thermal insulation requirements for buildings. December 2013.
  • Turkish Standard, TS 2164, principles for the preparation of the projects of the central heating systems. 2000.
  • Çengel Y. Isı ve Kütle Transferi Pratik bir Yaklaşım. Güven Kitabevi, İzmir-Türkiye, 2011.

Binalarda farklı yayma oranlarına bağlı olarak çok camlı pencerelerden güneş enerjisinden yararlanma

Year 2022, Volume: 11 Issue: 3, 781 - 796, 18.07.2022
https://doi.org/10.28948/ngumuh.1091332

Abstract

Çalışmada öncelikle en yüksek ve en düşük yayma oranlarına göre pencerelerin ısı transfer katsayıları hesaplanmıştır. İkinci olarak aylık ortalama güneş ışınımı değerleri belirlenmiştir. İkili, üçlü ve dörtlü cam pencereler için ısı transfer katsayıları hesaplanmıştır. Üçüncü olarak, beş iklim bölgesinin güney, kuzey ve doğu/batı yönündeki güneş radyasyonu, ayrı binaların gölgeleme faktörü, yüzey alanı ve güneş enerjisi faktörü ile çarpılmıştır. Böylece ısıtma periyodu için güneş enerjisi kazanç değeri ve soğutma periyodu için güneş enerjisi kayıpları belirlenmiştir. Son olarak, tüm iklim bölgeleri için ısıtma ve soğutma periyodu boyunca pasif güneş enerjisi kazanımları hesaplanmıştır. Güney yönünde beşinci iklim kuşağında 0.05 yayma oranına sahip pencerelerden ısı kaybının pasif güneş enerjisi ile çift camlı pencerelerde %167.9, üç camlı pencerelerde %258.7 ve dört camlı pencerelerde %349.1 sağlanabileceği hesaplanmıştır.

References

  • A. Kralj, M. Drev, M. Žnidaršic, B. Cerne, J. Hafner and B. P. Jelle, Investigations of 6-pane glazing: Properties and possibilities. Energy and Buildings, 190, 61–68, 2019. https://doi.org/10.1016 /j.enbuild. 2019.02.033
  • I. A. Gondal, , M. S. Athar and M. Khurram, Role of passive design and alternative energy in building energy optimization. Indoor and Built Environment, 30(2), 278-289, 2021. https://doi.org/10.1177/1420326X19887486
  • T. P. Obrecht, M. Premrov and V. Ž. Leskovar, Influence of the orientation on the optimal glazing size for passive houses in different European climates (for non-cardinal directions). Solar Energy, 189, 15–25, 2019. https://doi.org/10.1016/j.solener.2019.07.037
  • T. G. S. Lago, K. A. R. Ismail, F. A. M. Lino, Ventilated double glass window with reflective film: Modeling and assessment of performance. Solar Energy, 185, 72–88, 2019. https://doi.org/10.1016/j.solener.2019.04.047
  • T. Andersona and M. Luther, Designing for thermal comfort near a glazed exterior wall. Architectural Science Review, 55, 3:186–195, 2012. https://doi.org/10.1080/00038628.2012.697863
  • M. J. Alam and M. A. Islam, Effect of outdoor shading and window glazing on energy consumption of buildings in Bangladesh. Advances in Building Energy Research, 11, 2:180–192, 2017. https://doi.org/10.1080/17512549.2016.1190788
  • M. Arıcı and M. Kan, An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling. Renewable Energy 75:249-256, 2015. https://doi.org/10.1016/j.renene.2014.10.004
  • H. Li, K. Zhong, J. Yu, Y. Kang and Z. Zhai (John) Z, Solar energy absorption effect of buildings in hot summer and cold winter climate zone China. Solar Energy 198:519–528, 2020. https://doi.org/10.1016/j.solener.2020.01.047
  • J. Li, Q. Guan, H. Yang, Winter energy consumption in reading space of green library in cold regions. International Journal of Heat and Technology 36, 4:1256-1261, 2018. https://doi.org/10.18280/ijht.360413
  • I. Udrea and V. Badescu, Usage of solar shading devices to improve the thermal comfort in summer in a Romanian PassivHaus. Simulation:Transactions of the Society for Modeling and Simulation International, 96, 5:471–486,2020. https://doi.org/10.1177/0037549719887790
  • Y. Zhu, X. Fan, C. Wang and G. Sang, Analysis of heat transfer and thermal environment in a rural residential building for addressing energy poverty. Applied Sciences, 8, 2077:1-13, 2018. https://doi.org/10.3390/app8112077
  • C. Liu, Y. Wu, D. Li, T. Ma, and X. Liu, Investigations on thermal and optical performances of a glazing roof with PCM layer. Internatıonal journal of energy research International Journal of Energy Resources, 41:2138–2148,2017. https://doi.org/10.1002/er.3775
  • Y. Suna, K. Shanks, H. Baig, W. Zhang, X. Hao, Y. Li, B. He, R. Wilson, H. Liu, S. Sundaram, J. Zhang, L. Xie, T. Mallick and Y. Wu, Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: energy and daylight performance for different architecture designs. Applied Energy, 23:972–984, 2018. https://doi.org/10.1016/j.apenergy.2018.09.133
  • C. Baglivo, P. M. Congedo, M. D. Cataldo, L. D. Coluccia and D. D’Agostino, Envelope design optimization by thermal modelling of a building in a warm climate. Energies, 10, 1808:1-34, 2017. https://doi.org/10.3390/en10111808
  • I. R. Maestre, J. L. F. Blázquez, F. J. G. Gallero and J. D. M. Baladé. Effect of ,ky discretization for shading device calculation on building energy performance simulations. Energies 13, 138:1-14, 2020. https://doi.org/10.3390/en13061381
  • R. Khakian, M. Karimimoshaver, F. Aram, S. Z. Benis, A. Mosavi and A. R. Varkonyi-Koczy, Modeling nearly zero energy buildings for sustainable development in rural areas. Energies 13, 2593:1-19, 2020. https://doi.org/10.3390/en13102593
  • G. Zhang, Z. Wang, D. Li, Y. Wu and M. Arıcı, Seasonal thermal performance analysis of glazed window filled with paraffin including various nanoparticles. International Journal of Energy Resources, 44:3008–3019, 2020. https://doi.org/ 10.1002/er.5129
  • A. F. Altun and M. Kılıç, Influence of window parameters on the thermal performance of office rooms in different climate zones of Turkey. International Journal of Renewable Energy Research, 9:226-243, 2019.
  • M. Košir, T. Gostiša and Ž. Kristl, Influence of architectural building envelope characteristics on energy performance in Central European climatic conditions. Journal of Building Engineering, 15,278–288, 2018. https://doi.org/10.1016/j.jobe.2017.11.023
  • T. Ashrafian and N. Moazzen, The impact of glazing ratio and window configuration on occupants’ comfort and energy demand: The case study of a school building in Eskisehir. Turkey. Sustainable Cities and Society, 47:101483:1-14, 2019. https://doi.org/10.1016/j.scs.2019.101483
  • Q. Xuan, G. Li, Y. Lu, B. Zhao, X. Zhao, Y. Su, J. Ji and G. Pei, Design, optimization and performance analysis of an asymmetric concentrator-PV type window for the building south wall application. Solar Energy, 193:422–433,2019. https://doi.org/10.1016/ j.solener.2019.09.084
  • A. Sedaghat, F. Alkhatib, S. A. A. Oloomi, F. Sabri, H. Salem, S. Mohammad, J. Z. Waqar, M. A. Malayer and A. Negahi, Experimental study on the performance of solar window films in office buildings in Kuwait. Journal of Nanoparticle Research, 22, 85:1-17, 2020. https://doi.org/10.1007/s11051-020-04789-8
  • O. S. Asfour, Solar and shading potential of different configurations of building ıntegrated photovoltaics used as shading devices considering hot climatic conditions. Sustainability, 10,4373:1-15, 2018. https://doi.org/10.3390/su10124373
  • H. Manz and U. P. Menti, Energy performance of glazings in European climates. Renewable Energy, 37:226-232, 2012. https://doi.org/10.1016/j.renene. 2011.06.016
  • J. E. Frederick, Energy transfer through single- and double-pane windows subject to winter time environmental radiation. Journal of Building Physics, 38, 3:214–233, 2014. https://doi.org/10.1177/ 1744259113501628
  • J. Karlsson J and A. Roos, Evaluation of window energy rating models for different houses and European climates. Solar Energy, 76:71–77, 2004. https://doi.org/10.1016/j.solener.2003.08.016
  • S. S. Chandel and R. K. Aggarwal, Performance evaluation of a passive solar building in Western Himalayas. Renewable Energy, 33:2166–2173, 2008. https://doi.org/10.1016/j.renene.2008.01.008
  • S. Lu, Z. Li, Q. Zhao and F. Jiang, Modified calculation of solar heat gain coefficient in glazing façade buildings. Energy Procedia, 122, 151-156, 2017. https://doi.org/10.1016/j.egypro.2017.07.335
  • T. Kaasalainen, A. Makinen, T. Lehtinen, M. Moisio, J. Vinha, Architectural window design and energy efficiency: Impacts on heating, cooling and lighting needs in Finnish climates. Journal of Building Engineering, 27,100996:1-14, 2020. https://doi.org/ 10.1016/j.jobe.2019.100996
  • S. Jaber and S. Ajib, Thermal and economic windows design for different climate zones. Energy and Buildings, 43:3208–3215, 2011. https://doi.org/ 10.1016/j.enbuild.2011.08.019
  • J. S. Carlos and H. Corvacho, Evaluation of the thermal performance indices of a ventilated double window through experimental and analytical procedures: Uw-values. Renewable Energy, 63:747-754, 2014. https://doi.org/10.1016/j.renene.2013. 10.031
  • H. Karabay and M. Arıcı, Multiple pane window applications in various climatic regions of Turkey. Energy and Buildings, 45:67-71, 2012. https://doi.org/10.1016/j.enbuild.2011.10.020
  • O. Kon, Farklı yayıcılığa sahip iki, üç ve dört camlı pencerelere bağlı yakıt tüketimi. 1st International Conference on Advances in Mechanical and Mechatronics Engineering (ICAMMEN 2018), Ankara/Turkey 8-9 November 2018.
  • F. Al-Sibai, B. Hillemacher, M. Burghold and R. Kneer, Untersuchung zur dämmwirkung von wärmedämm-materialien mit ınfrarot reflektierenden oberflächen. Bauphysik, 35, 4, 225-234, 2013. https://doi.org/10.1002/bapi.201310071
  • O. Kon, Calculation of fuel consumption and emissions in buildings based on outdoor walls and windows using economic optimization. Journal of The Faculty of Engineering and Architecture of Gazi University, 33, 1:101-113, 2018. https://doi.org/ 10.17341/gazimmfd.406783
  • H. Kitagawa, T. Asawa, T. Kubota, A. R. Trihamdani, K. Sakurada and H. Mori, Optimization of window design for ventilative cooling with radiant floor cooling systems in the hot and humid climate of Indonesia. Building and Environment, 188, 107483:1-13, 2021. https://doi.org/10.1016/j.buildenv. 2020.107483
  • D. Hu and Y. Gu, A membrane reflector, polymer hybrid infrared emitter for better radiative cooling performance. Solar Energy Materials & Solar Cells, 234,111417:1-8, 2022. https://doi.org/10.1016/ j.solmat.2021.111417
  • A. Heydari, S. E. Sadati and M. R. Gharib, Effects of different window configurations on energy consumption in building: Optimization and economic analysis. Journal of Building Engineering, 35,102099:1-11, 2021. https://doi.org/10.1016/ j.jobe.2020.102099
  • L. Zhang, H. Zhang, X. Xu and L. Dong, Optimization method for prefabricated restroom envelope energy saving characteristics in hot summer and cold winter zone. Energy Exploration & Exploitation, 39,3:944–961, 2021. https://doi.org/10.1177/01445987 21993934
  • A. M. Raimundo, N. B. Saraiva, L. Dias Pereira and A. C. Rebelo, Market-Oriented cost-effectiveness and energy analysis of windows in Portugal. Energies, 14, 3720:1-19, 2021. https://doi.org/10.3390/en14133720
  • Y. Shi, X. Xi, Y. Zhang, H. Xu, J. Zhang and R. Zhang, Prediction and analysis of the thermal performance of composite vacuum glazing. Energies, 14,5769:1-15, 2021. https://doi.org/10.3390/en 14185769
  • Z. Wang, Q. Tian and J. Jia, Numerical study on performance optimization of an energy-saving insulated window. Sustainability, 13, 935:1-25, 2021. https://doi.org/10.3390/su13020935
  • Turkish Standard, TS 825, Thermal insulation requirements for buildings. December 2013.
  • Turkish Standard, TS 2164, principles for the preparation of the projects of the central heating systems. 2000.
  • Çengel Y. Isı ve Kütle Transferi Pratik bir Yaklaşım. Güven Kitabevi, İzmir-Türkiye, 2011.
There are 45 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Okan Kon 0000-0002-5166-0258

İsmail Caner 0000-0003-1232-649X

Publication Date July 18, 2022
Submission Date March 21, 2022
Acceptance Date May 11, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Kon, O., & Caner, İ. (2022). Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 781-796. https://doi.org/10.28948/ngumuh.1091332
AMA Kon O, Caner İ. Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings. NOHU J. Eng. Sci. July 2022;11(3):781-796. doi:10.28948/ngumuh.1091332
Chicago Kon, Okan, and İsmail Caner. “Benefiting from Solar Energy Due to Different Emissivity Levels of Multiple Glass Windows for Buildings”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 781-96. https://doi.org/10.28948/ngumuh.1091332.
EndNote Kon O, Caner İ (July 1, 2022) Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 781–796.
IEEE O. Kon and İ. Caner, “Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 781–796, 2022, doi: 10.28948/ngumuh.1091332.
ISNAD Kon, Okan - Caner, İsmail. “Benefiting from Solar Energy Due to Different Emissivity Levels of Multiple Glass Windows for Buildings”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 781-796. https://doi.org/10.28948/ngumuh.1091332.
JAMA Kon O, Caner İ. Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings. NOHU J. Eng. Sci. 2022;11:781–796.
MLA Kon, Okan and İsmail Caner. “Benefiting from Solar Energy Due to Different Emissivity Levels of Multiple Glass Windows for Buildings”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 781-96, doi:10.28948/ngumuh.1091332.
Vancouver Kon O, Caner İ. Benefiting from solar energy due to different emissivity levels of multiple glass windows for buildings. NOHU J. Eng. Sci. 2022;11(3):781-96.

23135