Research Article
BibTex RIS Cite

Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method

Year 2022, Volume: 11 Issue: 3, 776 - 780, 18.07.2022
https://doi.org/10.28948/ngumuh.1096585

Abstract

BaCe0.7Zr0.1Y0.16Zn0.04O3-δ (BCZYZ) ceramic slurry has been prepared with different solid loading and the maximum solid loading of the slurry has been predicted as 25 vol.% using the Krieger-Dougherty equation. The slurry with the maximum solid loading has been formulated and applied as an electrolyte on porous NiO/BCZYZ tubular supports by the dip-coating method. Cells sintered at 1500°C for 10h have been characterised by Scanning Electron Microscopy (SEM) analysis. The 30μ thick, very dense electrolyte layer has successfully been achieved with some closed pores.

References

  • A. Torabi, T.H. Etsell, P. Sarkar, Dip coating fabrication process for micro-tubular SOFCs. Solid State Ionic, 192, 372-375, 2011. https://doi.org/ 10.1016/j.ssi.2010.09.050
  • B. Shri Prakash, S. Senthil Kumar and S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable and Sustainable Energy Reviews, 36, 149–179, 2014. https://doi.org/10.1016/j.rser.2014.04.043
  • J.T.S Irvine and P. Connor, Solid oxide fuel cells: Facts and Figures. Springer London, 2013.
  • C. Jia, M. Chen and M. Han, Performance and electrochemical analysis of solid oxide fuel cells based LSCF-YSZ nano-electrode, International Journal of Applied Ceramic Technology, 14 (5), 1006-1012, 2017. https://doi.org/10.1111/ijac.12748
  • K.R. Lee, C.J. Tseng, S.C. Jang, J.C. Lin, K.W. Wang, J.K. Chang, T.C. Chen and S.W. Lee, Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid, International Journal of Hydrogen Energy 44, 23784-23792, 2019. https://doi.org/10.1016/j.ijhydene.2019.07.097
  • Y. Meng, J. Gao, H. Huang, M. Zou, J. Duffy, J. Tong and K.S. Brinkman, A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0.7Zr0.1Y0.2O3-δ electrolyte, Journal of Power Sources 439, 227093-227097, 2019. https://doi.org/10.1016/j.jpowsour.2019.227093
  • A. Mat, M. Canavar, B. Timurkutluk and Y. Kaplan, Investigation of micro-tube solid oxide fuel cell fabrication using extrusion method, International Journal of Hydrogen Energy, 41, 10037-10043, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.203
  • C. Timurkutluk, K. Bilgil, A. Celen, S. Onbilgin, T. Altan and U. Aydin, Experimental investigation on the effect of anode functional layer on the performance of anode supported micro-tubular SOFCs, International Journal of Hydrogen Energy, https://doi.org/ 10.1016/j.ijhydene.2021.09.260
  • S. Onbilgin, B. Timurkutluk, C. Timurkutluk and S. Celik, Comparison of electrolyte fabrication techniques on the performance of anode supported solid oxide fuel cells, International Journal of Hydrogen Energy, 45, 35162-35170, 2020. https://doi.org/10.1016/j.ijhydene. 2020.01.097
  • R.Z. Liu, S.R. Wang, B. Huang, C.H. Zhao, J.L. Li, Z.R. Wang, Z.Y. Wen and T.L. Wen, Dip-coating and co-sintering technologies for fabricating tubular solid oxide fuel cells, Journal of Solid State Electrochemistry, 13, 1905-1911, 2009. https://doi.org/ 10. 1007/s10008-008-0752-7
  • L. Lei, Y. Bai, Y. Liu and J. Liu, An investigation on dip-coating techniques for fabricating anode-supported solid oxide fuel cells, International Journal of Applied Ceramic Technology, 12 (2), 351-357, 2015. https://doi.org/10.1111/ijac.12147
  • C. Timurkutluk, B. Timurkutluk and Y. Kaplan, Experimental optimization of the fabrication parameters for anode-supported micro-tubular solid oxide fuel cells, International Journal of Hydrogen Energy 45, 23294-23309, 2020. https://doi.org/ 10.1016/j.ijhydene.2020.06.060
  • R. De la Torre Garcia, Production of micro-tubular solid oxide fuel cells. PhD Thesis, University of Trento, Trento, Italy, 2011.
  • Z. Hu, Y. Yang, Q. Chang, F. Liu, Y. Wang and J. Rao, Preparation of a high-performance ceramic membrane by a two-step coating method and one-step sintering, Applied Sciences, 9, 52-63, 2019. https://doi. org/10.3390/app9010052
  • X. Li, H. Zhong, J. Zhang, Y. Duan, H. Bai and J. Li, D. Jiang, Dispersion and properties of zirconia suspensions for stereolithography, International Journal of Applied Ceramic Technology, 00, 1-9, 2019. https://doi.org/10.1111/ijac.13321
  • A. De La Rosa, G. Ruiz, E. Castillo and R. Moreno, Calculation of dynamic viscosity in concentrated cementitious suspensions: Probabilistic approximation and Bayesian analysis, Materials (Basel), 14(8), 1971-1998, 2021. https://doi.org/10.3390/ma14081971
  • A. Azzolini, V.M. Sglavo and J.A. Downs, Novel method for the identification of the maximum solid loading suitable for optimal extrusion of ceramic pastes, Journal of Advanced Ceramics, 3(1), 7-16, 2014. https://doi.org/10.1007/s40145-014-0088-y
  • L.F.G. Setz, L. Koshimizu, S.R.H. Mello-Castanho and M.R. Morelli, Rheological analysis of ceramics suspensions with high solid loadings, Materials Science Forum, 727-728, 646-651, 2012. https://doi.org/ 10.4028/www.scientific.net/MSF.727-728.646
  • P.K. Senapati, D. Panda and A. Parida, Predicting viscosity of limestone-water slurry, Journal of Minerals and Materials Characterization and Engineering, 8(3), 203-221, 2009. https://doi.org/10.4236/JMMCE. 2009.83018
  • B. PFG, Concentration effects in the rheology of cement pastes: Krieger-Dougherty revisited. Proceedings of 13th International Congress on the Chemistry of Cement, Madrid, Spain, 2011.

Daldırarak kaplama yöntemi için katı yüklemesi yüksek ve viskozitesi düşük seramik kaplama çözeltisinin hazırlanması

Year 2022, Volume: 11 Issue: 3, 776 - 780, 18.07.2022
https://doi.org/10.28948/ngumuh.1096585

Abstract

Farklı katı yüklemelerine sahip BaCe0.7Zr0.1Y0.16Zn0.04O3-δ (BCZYZ) seramik çözeltileri hazırlandı ve çözelti için maksimum katı yüklemesi Krieger- Dougherty eşitliği yardımı ile hacimce %25 olarak belirlendi. Maksimum katı yüklemesine sahip kaplama çözeltisi hazırlanarak, daldırarak kaplama yöntemi ile elektrolit olarak gözenekli NiO/BCZYZ tüp seklindeki desteklerin üzerine kaplandı. 1500°C’deki 10 saatlik sinterleme işleminden sonra, taramalı elektron mikroskopu yardımı ile elektrolit karakterize edildi. 30μ kalınlıkta, kapalı gözenekler içeren, geçirimsiz elektrolit kaplaması elde edildi.

References

  • A. Torabi, T.H. Etsell, P. Sarkar, Dip coating fabrication process for micro-tubular SOFCs. Solid State Ionic, 192, 372-375, 2011. https://doi.org/ 10.1016/j.ssi.2010.09.050
  • B. Shri Prakash, S. Senthil Kumar and S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable and Sustainable Energy Reviews, 36, 149–179, 2014. https://doi.org/10.1016/j.rser.2014.04.043
  • J.T.S Irvine and P. Connor, Solid oxide fuel cells: Facts and Figures. Springer London, 2013.
  • C. Jia, M. Chen and M. Han, Performance and electrochemical analysis of solid oxide fuel cells based LSCF-YSZ nano-electrode, International Journal of Applied Ceramic Technology, 14 (5), 1006-1012, 2017. https://doi.org/10.1111/ijac.12748
  • K.R. Lee, C.J. Tseng, S.C. Jang, J.C. Lin, K.W. Wang, J.K. Chang, T.C. Chen and S.W. Lee, Fabrication of anode-supported thin BCZY electrolyte protonic fuel cells using NiO sintering aid, International Journal of Hydrogen Energy 44, 23784-23792, 2019. https://doi.org/10.1016/j.ijhydene.2019.07.097
  • Y. Meng, J. Gao, H. Huang, M. Zou, J. Duffy, J. Tong and K.S. Brinkman, A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0.7Zr0.1Y0.2O3-δ electrolyte, Journal of Power Sources 439, 227093-227097, 2019. https://doi.org/10.1016/j.jpowsour.2019.227093
  • A. Mat, M. Canavar, B. Timurkutluk and Y. Kaplan, Investigation of micro-tube solid oxide fuel cell fabrication using extrusion method, International Journal of Hydrogen Energy, 41, 10037-10043, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.203
  • C. Timurkutluk, K. Bilgil, A. Celen, S. Onbilgin, T. Altan and U. Aydin, Experimental investigation on the effect of anode functional layer on the performance of anode supported micro-tubular SOFCs, International Journal of Hydrogen Energy, https://doi.org/ 10.1016/j.ijhydene.2021.09.260
  • S. Onbilgin, B. Timurkutluk, C. Timurkutluk and S. Celik, Comparison of electrolyte fabrication techniques on the performance of anode supported solid oxide fuel cells, International Journal of Hydrogen Energy, 45, 35162-35170, 2020. https://doi.org/10.1016/j.ijhydene. 2020.01.097
  • R.Z. Liu, S.R. Wang, B. Huang, C.H. Zhao, J.L. Li, Z.R. Wang, Z.Y. Wen and T.L. Wen, Dip-coating and co-sintering technologies for fabricating tubular solid oxide fuel cells, Journal of Solid State Electrochemistry, 13, 1905-1911, 2009. https://doi.org/ 10. 1007/s10008-008-0752-7
  • L. Lei, Y. Bai, Y. Liu and J. Liu, An investigation on dip-coating techniques for fabricating anode-supported solid oxide fuel cells, International Journal of Applied Ceramic Technology, 12 (2), 351-357, 2015. https://doi.org/10.1111/ijac.12147
  • C. Timurkutluk, B. Timurkutluk and Y. Kaplan, Experimental optimization of the fabrication parameters for anode-supported micro-tubular solid oxide fuel cells, International Journal of Hydrogen Energy 45, 23294-23309, 2020. https://doi.org/ 10.1016/j.ijhydene.2020.06.060
  • R. De la Torre Garcia, Production of micro-tubular solid oxide fuel cells. PhD Thesis, University of Trento, Trento, Italy, 2011.
  • Z. Hu, Y. Yang, Q. Chang, F. Liu, Y. Wang and J. Rao, Preparation of a high-performance ceramic membrane by a two-step coating method and one-step sintering, Applied Sciences, 9, 52-63, 2019. https://doi. org/10.3390/app9010052
  • X. Li, H. Zhong, J. Zhang, Y. Duan, H. Bai and J. Li, D. Jiang, Dispersion and properties of zirconia suspensions for stereolithography, International Journal of Applied Ceramic Technology, 00, 1-9, 2019. https://doi.org/10.1111/ijac.13321
  • A. De La Rosa, G. Ruiz, E. Castillo and R. Moreno, Calculation of dynamic viscosity in concentrated cementitious suspensions: Probabilistic approximation and Bayesian analysis, Materials (Basel), 14(8), 1971-1998, 2021. https://doi.org/10.3390/ma14081971
  • A. Azzolini, V.M. Sglavo and J.A. Downs, Novel method for the identification of the maximum solid loading suitable for optimal extrusion of ceramic pastes, Journal of Advanced Ceramics, 3(1), 7-16, 2014. https://doi.org/10.1007/s40145-014-0088-y
  • L.F.G. Setz, L. Koshimizu, S.R.H. Mello-Castanho and M.R. Morelli, Rheological analysis of ceramics suspensions with high solid loadings, Materials Science Forum, 727-728, 646-651, 2012. https://doi.org/ 10.4028/www.scientific.net/MSF.727-728.646
  • P.K. Senapati, D. Panda and A. Parida, Predicting viscosity of limestone-water slurry, Journal of Minerals and Materials Characterization and Engineering, 8(3), 203-221, 2009. https://doi.org/10.4236/JMMCE. 2009.83018
  • B. PFG, Concentration effects in the rheology of cement pastes: Krieger-Dougherty revisited. Proceedings of 13th International Congress on the Chemistry of Cement, Madrid, Spain, 2011.
There are 20 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Chemical Engineering
Authors

Berceste Beyribey 0000-0001-6807-8566

Joshua Persky This is me 0000-0002-8823-5968

Publication Date July 18, 2022
Submission Date April 2, 2022
Acceptance Date May 27, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Beyribey, B., & Persky, J. (2022). Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 776-780. https://doi.org/10.28948/ngumuh.1096585
AMA Beyribey B, Persky J. Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method. NOHU J. Eng. Sci. July 2022;11(3):776-780. doi:10.28948/ngumuh.1096585
Chicago Beyribey, Berceste, and Joshua Persky. “Preparation of High Solid Loading and Low Viscosity Ceramic Slurry for Dip-Coating Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11, no. 3 (July 2022): 776-80. https://doi.org/10.28948/ngumuh.1096585.
EndNote Beyribey B, Persky J (July 1, 2022) Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11 3 776–780.
IEEE B. Beyribey and J. Persky, “Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method”, NOHU J. Eng. Sci., vol. 11, no. 3, pp. 776–780, 2022, doi: 10.28948/ngumuh.1096585.
ISNAD Beyribey, Berceste - Persky, Joshua. “Preparation of High Solid Loading and Low Viscosity Ceramic Slurry for Dip-Coating Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 11/3 (July 2022), 776-780. https://doi.org/10.28948/ngumuh.1096585.
JAMA Beyribey B, Persky J. Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method. NOHU J. Eng. Sci. 2022;11:776–780.
MLA Beyribey, Berceste and Joshua Persky. “Preparation of High Solid Loading and Low Viscosity Ceramic Slurry for Dip-Coating Method”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 11, no. 3, 2022, pp. 776-80, doi:10.28948/ngumuh.1096585.
Vancouver Beyribey B, Persky J. Preparation of high solid loading and low viscosity ceramic slurry for dip-coating method. NOHU J. Eng. Sci. 2022;11(3):776-80.

download