Research Article
BibTex RIS Cite

Design of a non-isolated charging unit of an off-grid PV supported electric vehicle charging station

Year 2023, Volume: 12 Issue: 1, 104 - 112, 15.01.2023
https://doi.org/10.28948/ngumuh.1128466

Abstract

Due to geopolitical risks and the consequent rising fossil fuel costs, the interest in electric vehicles is increasing. The widespread use of electric vehicles causes an increase in charging stations and an increase in the load on the electricity grid. For this reason, it becomes necessary to design new charging systems. In this study, the charging unit in an electric vehicle charging system supported by solar energy was designed in Matlab/Simulink environment. Instead of insulated (transformer) DC-DC converters used in charging units, non-isolated (power electronic circuit) multi-stage boost converters are used in the designed charging unit. Thus, if the transformers in not of use; transformer losses (heat losses that will occur in transformer coils) are zeroed, it is aimed to reduce the size of the circuits used and to reduce the system cost. The graphics of the data of the designed system were given and comments were made.

References

  • A. Kerem ve H. Gürbak, Fast Charging Station Technologies for Electric Vehicles. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C Tasarım ve Teknoloji 8 (3), 644-661, 2020. https://doi.org/10.29109/gujsc .713 085.
  • A. Kerem, Elektrikli Araç Teknolojisinin Gelişimi ve Gelecek Beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 (1), 1-13, 2014. https ://dergipark.org.tr/tr/pub/makufebed/issue/19419/206527.
  • B. Jar, N. Watson and A. Miller, Rapid EV Chargers: Implementation of a Charger. EEA Conference & Exhibition, 22 - 24 June, Wellington, 2016. https:// www.researchgate.net/publication/319162700.
  • E. İşen ve H. Tarlak, Electric Vehicles and Battery Charging Systems. Kırklareli University Journal of Engineering and Science 4-1, 124-141, 2018. https:// dergipark.org.tr/tr/pub/klujes/issue/37436/398993.
  • C. Dericioglu, E. Yirik, E. Unal, M. U. Cuma, B. Onur ve M. Tumay, A Review Of Charging Technologies For Commercial Electric Vehicles. International Journal of Advances on Automotive and Technology, 2 (1), 61-70, 2018. http://dx.doi.org/10. 15659/ijaat.18. 01.892.
  • F. Baronti, M. Y. Chow, C. Ma, H. Rahimi Eichi and R. Saletti, E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle. EURASIP Journal on Embedded Systems December 2016. http://dx.doi.org/10.1186/s13639-016-0032-z.
  • B. Chae, T. Kang, T. Kang and Y. Suh, Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems. The Transactions of the Korean Institute of Power Electronics, 20 (4), 37 5-387, 2015. https://doi.org/10.61 13/TKPE.2015.20 .4.375.
  • R. Kondo, Y. Higaki and M. Yamada, Experimental Verification of Reducing Power Loss under Light Load Condition of a Bi-Directional Isolated DC/DC Converter for a Battery Charger Discharger of Electrical Vehicle. IEEJ Journal of Industry Applications, 10 (3), 377-383, 2021. doi:10.1541/ieejji a.17000897.
  • L. Zhu, H. Bai, A. Brown and L. Keuck, A Current-fed Three-port DC/DC Converter for Integration of On-board Charger and Auxiliary Power Module in Electric Vehicles. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 577-582, 2021. https:// doi.org/10.1109/APEC42165.2021.9487263.
  • S. Chakraborty, H. N. Vu, M. M. Hasan, D. D. Tran, M. El Baghdadı and O. Hegazy, DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends. MDPI Energies. 12 (8):1569, 2019. http://dx.doi.org/10.3390/en12081569.
  • L. Xiaodong and L. Yi-Fan, An Optimized Phase-Shift Modulation For Fast Transient Response in a Dual-Active-Bridge Converter. IEEE Transactions on Power Electronics, 29 (6), 2661-2665, 2014. http://dx.doi.org/ 10.1109/TPEL.2013.2294714.
  • A. R. Bhatti, Z. Salam, M. J. Abdul Aziz, K. P. Yee and R. H. Ashique, Electric vehicles charging using photovoltaic: Status and technological review. Renewable and Sustainable Energy Reviews, 54, 34–47, 2016. http://dx.doi.org/10.1016/j.rser .2015.09.091.
  • T. Rampradesh , R. Lakshmipriya and C. Christober Asir Rajan, PV Powered Dc-Dc Boost Converter Charger For Electric Vehicles With 3 Different Voltage Levels. European Journal of Molecular & Clinical Medicine, 7(6), 2636-2642, 2020.
  • V. Kumar, V. R. Teja, M. Singh, and S. Mishra, PV Based Off-Grid Charging Station for Electric Vehicle. IFAC PapersOnLine, 52 (4), 276-281, 2019. https://doi .org/10.1016/j.ifacol.2019.08.21 1.
  • N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: converters, applications, and designs. John Wiley & sons, INC., United States of America, 1995.
  • W. Xiao, Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control. 1260456978, McGraw-Hill Education, New York, 2021.
  • I. Laoprom and S. Tunyasrirut, Design of PI Controller for Voltage Controller of Four-Phase Interleaved Boost Converter Using Particle Swarm Optimization. Journal of Control Science and Engineering, 13, 2020. https:// doi.org/10.1155/2020/9515160.
  • A. Pradhan and B. Panda, A Simplified Design and Modeling of Boost Converter for Photovoltaic Sytem. International Journal of Electrical and Computer Engineering (IJECE), 8 (1), 141–149, 2018. doi:10.11 591/ijece.v8i1.pp141-149.
  • M. Jarabicová and S. Kaščák, The Parametric Simulation of the Interleaved Boost Converter for the Electric Transport Vehicle. Transportation Research Procedia, 40, 287-294, 2019. https://doi.org/10.1016/ j.trpro.2019.07.043.
  • A. Srilatha, A. Pandian, and P. Srinivasa Varma, WITHDRAWN: Power factor correction controller with Buck Boost converter for fast charging of electrical vehicles. Materials Today: Proceedings, ISSN 2214-7853, 2020. https://doi.org/10.1016/j.matp r.2020.11.097.
  • K. F. Chan, C. S. Lam, W. L. Zeng, W. M. Zheng, S. W. Sin and M. C. Wong, Generalized Type III controller design interface for DC-DC converters. TENCON 2015 IEEE Region 10 Conference. http:// dx.doi.org/10.1109/TENCON.2015.7373052.
  • R. S. Leite, J. L. Afonso and V. Monteiro, A Novel Multilevel Bidirectional Topology for On-Board EV Battery Chargers in Smart Grids. Energies 11 (12): 3453, 2018. https://doi.org/10.3390/en11123453.

İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı

Year 2023, Volume: 12 Issue: 1, 104 - 112, 15.01.2023
https://doi.org/10.28948/ngumuh.1128466

Abstract

Jeopolitik riskler ve buna bağlı olarak artan fosil yakıt maliyetleri nedeniyle, elektrikli araçlara olan ilgi giderek artmaktadır. Elektrikli araçların yaygınlaşması, şarj istasyonlarının artmasına, beraberinde elektrik şebekesi üzerindeki yükün artmasına sebep olmaktadır. Bu sebeple yeni şarj sistemlerinin tasarımlarının yapılması gerekli hale gelmektedir. Bu çalışmada, güneş enerjisi ile desteklenmiş bir elektrikli araç şarj sisteminde bulunan şarj ünitesinin Matlab/Simulink ortamında tasarımı yapılmıştır. Şarj ünitelerinde kullanılan izoleli (transformatörlü) DC-DC dönüştürücüler yerine, tasarlanan şarj ünitesinde izolesiz (güç elektronik devreli), çok katlı yükseltici dönüştürücü kullanılmıştır. Böylece transformatörlerin kullanılmamasıyla birlikte; trafo kayıpları (transformatör bobinlerinde meydana gelecek ısı kayıpları) sıfırlanmış, kullanılan devrelerin boyutlarının azaltılması ve sistem maliyetinin düşürülmesi hedeflenmiştir. Tasarlanan sisteme ait verilerin grafikleri verilerek yorumları yapılmıştır.

References

  • A. Kerem ve H. Gürbak, Fast Charging Station Technologies for Electric Vehicles. Gazi Üniversitesi Fen Bilimleri Dergisi, Part C Tasarım ve Teknoloji 8 (3), 644-661, 2020. https://doi.org/10.29109/gujsc .713 085.
  • A. Kerem, Elektrikli Araç Teknolojisinin Gelişimi ve Gelecek Beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 (1), 1-13, 2014. https ://dergipark.org.tr/tr/pub/makufebed/issue/19419/206527.
  • B. Jar, N. Watson and A. Miller, Rapid EV Chargers: Implementation of a Charger. EEA Conference & Exhibition, 22 - 24 June, Wellington, 2016. https:// www.researchgate.net/publication/319162700.
  • E. İşen ve H. Tarlak, Electric Vehicles and Battery Charging Systems. Kırklareli University Journal of Engineering and Science 4-1, 124-141, 2018. https:// dergipark.org.tr/tr/pub/klujes/issue/37436/398993.
  • C. Dericioglu, E. Yirik, E. Unal, M. U. Cuma, B. Onur ve M. Tumay, A Review Of Charging Technologies For Commercial Electric Vehicles. International Journal of Advances on Automotive and Technology, 2 (1), 61-70, 2018. http://dx.doi.org/10. 15659/ijaat.18. 01.892.
  • F. Baronti, M. Y. Chow, C. Ma, H. Rahimi Eichi and R. Saletti, E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle. EURASIP Journal on Embedded Systems December 2016. http://dx.doi.org/10.1186/s13639-016-0032-z.
  • B. Chae, T. Kang, T. Kang and Y. Suh, Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems. The Transactions of the Korean Institute of Power Electronics, 20 (4), 37 5-387, 2015. https://doi.org/10.61 13/TKPE.2015.20 .4.375.
  • R. Kondo, Y. Higaki and M. Yamada, Experimental Verification of Reducing Power Loss under Light Load Condition of a Bi-Directional Isolated DC/DC Converter for a Battery Charger Discharger of Electrical Vehicle. IEEJ Journal of Industry Applications, 10 (3), 377-383, 2021. doi:10.1541/ieejji a.17000897.
  • L. Zhu, H. Bai, A. Brown and L. Keuck, A Current-fed Three-port DC/DC Converter for Integration of On-board Charger and Auxiliary Power Module in Electric Vehicles. IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 577-582, 2021. https:// doi.org/10.1109/APEC42165.2021.9487263.
  • S. Chakraborty, H. N. Vu, M. M. Hasan, D. D. Tran, M. El Baghdadı and O. Hegazy, DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends. MDPI Energies. 12 (8):1569, 2019. http://dx.doi.org/10.3390/en12081569.
  • L. Xiaodong and L. Yi-Fan, An Optimized Phase-Shift Modulation For Fast Transient Response in a Dual-Active-Bridge Converter. IEEE Transactions on Power Electronics, 29 (6), 2661-2665, 2014. http://dx.doi.org/ 10.1109/TPEL.2013.2294714.
  • A. R. Bhatti, Z. Salam, M. J. Abdul Aziz, K. P. Yee and R. H. Ashique, Electric vehicles charging using photovoltaic: Status and technological review. Renewable and Sustainable Energy Reviews, 54, 34–47, 2016. http://dx.doi.org/10.1016/j.rser .2015.09.091.
  • T. Rampradesh , R. Lakshmipriya and C. Christober Asir Rajan, PV Powered Dc-Dc Boost Converter Charger For Electric Vehicles With 3 Different Voltage Levels. European Journal of Molecular & Clinical Medicine, 7(6), 2636-2642, 2020.
  • V. Kumar, V. R. Teja, M. Singh, and S. Mishra, PV Based Off-Grid Charging Station for Electric Vehicle. IFAC PapersOnLine, 52 (4), 276-281, 2019. https://doi .org/10.1016/j.ifacol.2019.08.21 1.
  • N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: converters, applications, and designs. John Wiley & sons, INC., United States of America, 1995.
  • W. Xiao, Power Electronics Step-by-Step: Design, Modeling, Simulation, and Control. 1260456978, McGraw-Hill Education, New York, 2021.
  • I. Laoprom and S. Tunyasrirut, Design of PI Controller for Voltage Controller of Four-Phase Interleaved Boost Converter Using Particle Swarm Optimization. Journal of Control Science and Engineering, 13, 2020. https:// doi.org/10.1155/2020/9515160.
  • A. Pradhan and B. Panda, A Simplified Design and Modeling of Boost Converter for Photovoltaic Sytem. International Journal of Electrical and Computer Engineering (IJECE), 8 (1), 141–149, 2018. doi:10.11 591/ijece.v8i1.pp141-149.
  • M. Jarabicová and S. Kaščák, The Parametric Simulation of the Interleaved Boost Converter for the Electric Transport Vehicle. Transportation Research Procedia, 40, 287-294, 2019. https://doi.org/10.1016/ j.trpro.2019.07.043.
  • A. Srilatha, A. Pandian, and P. Srinivasa Varma, WITHDRAWN: Power factor correction controller with Buck Boost converter for fast charging of electrical vehicles. Materials Today: Proceedings, ISSN 2214-7853, 2020. https://doi.org/10.1016/j.matp r.2020.11.097.
  • K. F. Chan, C. S. Lam, W. L. Zeng, W. M. Zheng, S. W. Sin and M. C. Wong, Generalized Type III controller design interface for DC-DC converters. TENCON 2015 IEEE Region 10 Conference. http:// dx.doi.org/10.1109/TENCON.2015.7373052.
  • R. S. Leite, J. L. Afonso and V. Monteiro, A Novel Multilevel Bidirectional Topology for On-Board EV Battery Chargers in Smart Grids. Energies 11 (12): 3453, 2018. https://doi.org/10.3390/en11123453.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Electrical and Electronics Engineering
Authors

Mohamad Nedal Sahloul 0000-0003-1295-2001

Ahmet Deniz 0000-0002-0326-3733

Fatih Onur Hocaoğlu 0000-0002-3640-7676

Publication Date January 15, 2023
Submission Date June 9, 2022
Acceptance Date October 29, 2022
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Sahloul, M. N., Deniz, A., & Hocaoğlu, F. O. (2023). İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 104-112. https://doi.org/10.28948/ngumuh.1128466
AMA Sahloul MN, Deniz A, Hocaoğlu FO. İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı. NOHU J. Eng. Sci. January 2023;12(1):104-112. doi:10.28948/ngumuh.1128466
Chicago Sahloul, Mohamad Nedal, Ahmet Deniz, and Fatih Onur Hocaoğlu. “İzolesiz Bir off-Grid PV Destekli Elektrikli Araç şarj Istasyonunun şarj ünitesi tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 1 (January 2023): 104-12. https://doi.org/10.28948/ngumuh.1128466.
EndNote Sahloul MN, Deniz A, Hocaoğlu FO (January 1, 2023) İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 104–112.
IEEE M. N. Sahloul, A. Deniz, and F. O. Hocaoğlu, “İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı”, NOHU J. Eng. Sci., vol. 12, no. 1, pp. 104–112, 2023, doi: 10.28948/ngumuh.1128466.
ISNAD Sahloul, Mohamad Nedal et al. “İzolesiz Bir off-Grid PV Destekli Elektrikli Araç şarj Istasyonunun şarj ünitesi tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (January 2023), 104-112. https://doi.org/10.28948/ngumuh.1128466.
JAMA Sahloul MN, Deniz A, Hocaoğlu FO. İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı. NOHU J. Eng. Sci. 2023;12:104–112.
MLA Sahloul, Mohamad Nedal et al. “İzolesiz Bir off-Grid PV Destekli Elektrikli Araç şarj Istasyonunun şarj ünitesi tasarımı”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 1, 2023, pp. 104-12, doi:10.28948/ngumuh.1128466.
Vancouver Sahloul MN, Deniz A, Hocaoğlu FO. İzolesiz bir off-grid PV destekli elektrikli araç şarj istasyonunun şarj ünitesi tasarımı. NOHU J. Eng. Sci. 2023;12(1):104-12.

23135