Research Article
BibTex RIS Cite

Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi

Year 2023, Volume: 12 Issue: 1, 82 - 87, 15.01.2023
https://doi.org/10.28948/ngumuh.1133871

Abstract

Küresel çevre problemleri ve modern dünyanın artan enerji talebi alternatif ve yenilenebilir enerji kaynakları arayışını ortaya çıkarmıştır. Alternatif enerji kaynaklarının başında ise yüksek enerji içeriğine sahip olması, enerji taşıyıcısı olması ve çevre dostu olması gibi avantajları nedeniyle hidrojen gelmektedir. Hidrojen üretim prosesleri; elektrokimyasal yöntemler, termal yöntemler ve biyolojik hidrojen üretimi olarak sıralanabilir. Bu yöntemler arasında daha sürdürülebilir olması nedeniyle biyolojik yöntemler ön plana çıkmaktadır. Bu çalışmada, biyolojik bir proses olan karanlık fermantasyon yöntemi ile elma posasından biyohidrojen üretimi incelenmiştir. Elma posası kullanılarak, aşı çamuruna uygulanan fiziksel ön işlem (90°C- 30 dk) sonrası farklı substrat/aşı (S/I) yükleme oranlarında kesikli reaktörlerden elde edilen biyohidrojen verimleri karşılaştırılmıştır. En iyi performansı gösteren S/I 2 yükleme koşullarında uçucu katı başına (UK) 208 ml/gUK biyogaz ve 18 mlH2/gUK biyohidrojen üretimi gerçekleşmiştir. Mikrobiyal dağılım sonuçları incelendiğinde Lactobacillus, Clostridium ve Lachnospiraceae türlerinin en baskın türler olduğu görülmektedir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

121Y452

Thanks

Bu çalışma TÜBİTAK 121Y452 no.lu proje desteği yapılmış olup yazarlar TÜBİTAK’a teşekkürü bir borç bilirler.

References

  • R. Haron, R. Mat, T. Abdullah, and R. Rahman, Overview on utilization of biodiesel by-product for biohydrogen production, Journal of Cleaner Production, 172, 314-324, 2018. https://doi.org/ 10.1016/j.jclepro.2017.10.160
  • M. Ali, Q. Shafique, D. Kumar, S. Kumar and S. Kumar, Energy and exergy analysis of a 747-MW combined cycle power plant Guddu, International Journal of Ambient Energy, 41(13), 1495-1504, 2020. https://doi.org/10.1080/01430750.2018.1517680
  • J. Ratnasingam, G. Ramasamy, F. Ioras and N. Parasuraman, Assessment of the carbon footprint of rubberwood sawmilling in peninsular Malaysia: Challenging the green label of the material, BioResources, 12(2), 3490-3503, 2017. https://doi.org/ 10.15376/biores.12.2.3490-3503
  • B. Hüner, N. Demir and M.F. Kaya, Electrodeposition of NiCu bimetal on 3D printed electrodes for hydrogen evolution reactions in alkaline media, International Journal of Hydrogen Energy, 47(24), 12136-12146, 2022. https://doi.org/10.1016/j.ijhydene.2021.10.009
  • S. F. Ahmed, N. Rafa, M. Mofijur, I.A. Badruddin, A. Inayat, M.S. Ali and T.M. Yunus Khan, Biohydrogen production from biomass sources: metabolic pathways and economic analysis, Frontiers in Energy Research, 9, 753878, 2021. https://doi.org/10.3389/fenrg. 2021.753878
  • G. Balachandar, N. Khanna and D. Das, Biohydrogen production from organic wastes by dark fermentation, In Biohydrogen (pp. 103-144), 2013. https://doi.org/ 10.1016/B978-0-444-59555-3.00006-4
  • L. Zhao, Z. Wang, H.Y. Ren, C. Chen, J. Nan, G. L. Cao, and N. Q. Ren, Residue cornstalk derived biochar promotes direct bio-hydrogen production from anaerobic fermentation of cornstalk, Bioresource Technology, 320, 124338, 2021. https://doi.org/ 10.1016/j.biortech.2020.124338
  • G. Kumar, T. Mathimani, E.R. Rene, and A. Pugazhendhi, Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles, International Journal of Hydrogen Energy, 44(26), 13106-13113, 2019. https://doi.org/10.1016/j.ijhydene.2019.03.131
  • H. Singh, S. Rout, and D. Das, Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery, International Journal of Hydrogen Energy, 47(1), 102-116, 2022. https://doi.org/ 10.1016/j.ijhydene.2021.10.018
  • D. Cheng, H. H. Ngo, W. Guo, S. W Chang, D. D. Nguyen, L. Deng, L and N. B. Hoang, Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment, Bioresource Technology, 127045, 2022. https://doi.org/10.1016/j.biortech.2022.127045
  • L. Rosa and M. Mazzotti, Potential for hydrogen production from sustainable biomass with carbon capture and storage, Renewable and Sustainable Energy Reviews, 157, 112123, 2022. https://doi.org/10.1016/j.rser.2022.112123
  • Statista, Apple production worldwide, https://www.statista.com/statistics/961248/production-of-apples-worldwide/ Erişim tarihi: 17.09.2021.
  • USDA Foreign Agricultural Service, Turkey: Fresh Deciduous Fruit Annual, https://www.fas.usda.gov/data/turkey-fresh-deciduous-fruit-annual-5 . Erişim tarihi: 17.09.2021
  • J. R. Banu, J. Merrylin, T. M. Usman, R. Y. Kannah, M. Gunasekaran, S. H. Kim and G. Kumar, Impact of pretreatment on food waste for biohydrogen production: a review, International Journal of Hydrogen Energy, 45(36), 18211-18225, 2020. https://doi.org/10.1016/j.ijhydene.2019.09.176
  • Y. Yin, J. Hu and J. Wang, Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods, International journal of hydrogen energy, 39(25), 13550-13556, 2014. https://doi.org/10.1016/j.ijhydene.2014.01.145
  • R. Ali, F. Saravia, A. Hille-Reichel, J. Gescher and H. Horn, Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculums, and thermal pre-treatment, Bioresource technology, 319, 124166, 2021. https://doi.org/10.1016/j.biortech.2020. 124166
  • D. R. S. Lima, O. F. H. Adarme, B. E. L. Baêta, L. V. A. Gurgel and de S. F. Aquino, Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: a kinetic analysis, Industrial Crops and Products, 111, 684-693, 2018. https://doi.org/10.1016/j.indcrop.2017.11.048
  • T. N. B. Dung, C. H. Lay, D. D. Nguyen, S. W. Chang, J. R. Banu, Y. Hong and J. H. Park, Improving the biohydrogen production potential of macroalgal biomass through mild acid dispersion pretreatment, Fuel, 332, 125895, 2023. https://doi.org/10.1016/ j.fuel.2022.125895
  • Y. Wong, T. Wu, J. Juan, A Review of Sustainable Hydrogen Production Using Seed Sludge Via Dark Fermentation, Renewable and Sustainable Energy Reviews, 34, 471-482, 2014. https://doi.org/ 10.1016/j.rser.2014.03.008
  • P. Mishra, F. Ameen, R. M. Zaid, L. Singh, Z. Ab Wahid, M. A. Islam and S. Al Nadhari, Relative effectiveness of substrate-inoculum ratio and initial pH on hydrogen production from palm oil mill effluent: kinetics and statistical optimization, Journal of Cleaner Production, 228, 276-283, 2019. https://doi.org/ 10.1016/j.jclepro.2019.04.317
  • S. Srikanth and S. V. Mohan, Regulating feedback inhibition caused by the accumulated acid intermediates during acidogenic hydrogen production through feed replacement, International Journal of Hydrogen Energy, 39(19), 10028-10040, 2014. https://doi.org/10.1016/j.ijhydene.2014.04.152
  • L. Ge, J. Qi, B. Shao, Z. Ruan, Y. Ren, S. Sui and W. Song, Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier, Gut Microbes, 14(1), 2013764, 2022. https://doi.org/10.1080/19490976. 2021.2013764
  • A. Sikora, M. Błaszczyk, M. Jurkowski and U. Zielenkiewicz, Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? INTECH open science open minds, 488-514, 2013. http://dx.doi.org/10.5772/50364
  • R. C. da Silva Mazareli, A. C. Villa-Montoya, T. P. Delforno, V. B. Centurion, V. M. de Oliveira,E. L. Silva, and M. B. A. Varesche, Metagenomic analysis of autochthonous microbial biomass from banana waste: Screening design of factors that affect hydrogen production, Biomass and bioenergy, 138, 105573, 2020. https://doi.org/10.1016/j.biombioe.2020.105573
  • A. C. V. Montoya, R. C. da Silva Mazareli, T. P. Delforno, V. B. Centurion, V. M. de Oliveira, E. L. Silva, and M. B. A. Varesche, Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community, International Journal of Hydrogen Energy, 45(7), 4205-4222, 2020. https://doi.org/10.1016/j.ijhydene.2019.12.062
  • M. Pérez-Rangel, J. E. Barboza-Corona, M. Navarro-Díaz, A. E. Escalante and I. Valdez-Vazquez, The duo Clostridium and Lactobacillus linked to hydrogen production from a lignocellulosic substrate, Water Science and Technology, 83(12), 3033-304, 2021. https://doi.org/10.2166/wst.2021.186
  • W. Cieciura, S. Borowski, A. Otlewska, Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation, Renew Energy 153:1226–1237, 2020. https://doi.org/10.1016/ j.renene.2020.02.085
  • A. H. Salem, R. Brunstermann, T. Mietzel, Effect of pretreatment and hydraulic retention time on biohydrogen production from organic wastes, Int Journal of Hydrogen Energy, 1–10, 2018 https://doi.org/10.1016/j.ijhydene.2018.01.114

Effect of different loading rates on biohydrogen production from apple pulp

Year 2023, Volume: 12 Issue: 1, 82 - 87, 15.01.2023
https://doi.org/10.28948/ngumuh.1133871

Abstract

Global environmental problems and the increasing energy demand of the modern world have revealed the search for alternative and renewable energy sources. Hydrogen is one of these sources and has advantages such as having high energy content, being an energy carrier and being environmentally friendly. Hydrogen production processes can be lined as electrochemical methods, thermal methods, and biological hydrogen production. Among these methods, biological methods come to the fore because they are more economical and sustainable. In this study, biohydrogen production from apple pulp by dark fermentation method, which is a biological process, was investigated. Biohydrogen yields obtained from batch reactors at different substrate/inoculum (S/I) ratios were compared after physical pretreatment on inoculum (90°C-30 min). S/I 2 was the best performance yielded for per volatile solid (VS) 208 ml/gVS biogas and 18 mlH2/gVS biohydrogen production. When the microbial distribution results are examined, it is seen that Lactobacillus, Clostridium and Lachnospiraceae are the most dominant species.

Project Number

121Y452

References

  • R. Haron, R. Mat, T. Abdullah, and R. Rahman, Overview on utilization of biodiesel by-product for biohydrogen production, Journal of Cleaner Production, 172, 314-324, 2018. https://doi.org/ 10.1016/j.jclepro.2017.10.160
  • M. Ali, Q. Shafique, D. Kumar, S. Kumar and S. Kumar, Energy and exergy analysis of a 747-MW combined cycle power plant Guddu, International Journal of Ambient Energy, 41(13), 1495-1504, 2020. https://doi.org/10.1080/01430750.2018.1517680
  • J. Ratnasingam, G. Ramasamy, F. Ioras and N. Parasuraman, Assessment of the carbon footprint of rubberwood sawmilling in peninsular Malaysia: Challenging the green label of the material, BioResources, 12(2), 3490-3503, 2017. https://doi.org/ 10.15376/biores.12.2.3490-3503
  • B. Hüner, N. Demir and M.F. Kaya, Electrodeposition of NiCu bimetal on 3D printed electrodes for hydrogen evolution reactions in alkaline media, International Journal of Hydrogen Energy, 47(24), 12136-12146, 2022. https://doi.org/10.1016/j.ijhydene.2021.10.009
  • S. F. Ahmed, N. Rafa, M. Mofijur, I.A. Badruddin, A. Inayat, M.S. Ali and T.M. Yunus Khan, Biohydrogen production from biomass sources: metabolic pathways and economic analysis, Frontiers in Energy Research, 9, 753878, 2021. https://doi.org/10.3389/fenrg. 2021.753878
  • G. Balachandar, N. Khanna and D. Das, Biohydrogen production from organic wastes by dark fermentation, In Biohydrogen (pp. 103-144), 2013. https://doi.org/ 10.1016/B978-0-444-59555-3.00006-4
  • L. Zhao, Z. Wang, H.Y. Ren, C. Chen, J. Nan, G. L. Cao, and N. Q. Ren, Residue cornstalk derived biochar promotes direct bio-hydrogen production from anaerobic fermentation of cornstalk, Bioresource Technology, 320, 124338, 2021. https://doi.org/ 10.1016/j.biortech.2020.124338
  • G. Kumar, T. Mathimani, E.R. Rene, and A. Pugazhendhi, Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles, International Journal of Hydrogen Energy, 44(26), 13106-13113, 2019. https://doi.org/10.1016/j.ijhydene.2019.03.131
  • H. Singh, S. Rout, and D. Das, Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery, International Journal of Hydrogen Energy, 47(1), 102-116, 2022. https://doi.org/ 10.1016/j.ijhydene.2021.10.018
  • D. Cheng, H. H. Ngo, W. Guo, S. W Chang, D. D. Nguyen, L. Deng, L and N. B. Hoang, Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment, Bioresource Technology, 127045, 2022. https://doi.org/10.1016/j.biortech.2022.127045
  • L. Rosa and M. Mazzotti, Potential for hydrogen production from sustainable biomass with carbon capture and storage, Renewable and Sustainable Energy Reviews, 157, 112123, 2022. https://doi.org/10.1016/j.rser.2022.112123
  • Statista, Apple production worldwide, https://www.statista.com/statistics/961248/production-of-apples-worldwide/ Erişim tarihi: 17.09.2021.
  • USDA Foreign Agricultural Service, Turkey: Fresh Deciduous Fruit Annual, https://www.fas.usda.gov/data/turkey-fresh-deciduous-fruit-annual-5 . Erişim tarihi: 17.09.2021
  • J. R. Banu, J. Merrylin, T. M. Usman, R. Y. Kannah, M. Gunasekaran, S. H. Kim and G. Kumar, Impact of pretreatment on food waste for biohydrogen production: a review, International Journal of Hydrogen Energy, 45(36), 18211-18225, 2020. https://doi.org/10.1016/j.ijhydene.2019.09.176
  • Y. Yin, J. Hu and J. Wang, Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods, International journal of hydrogen energy, 39(25), 13550-13556, 2014. https://doi.org/10.1016/j.ijhydene.2014.01.145
  • R. Ali, F. Saravia, A. Hille-Reichel, J. Gescher and H. Horn, Propionic acid production from food waste in batch reactors: Effect of pH, types of inoculums, and thermal pre-treatment, Bioresource technology, 319, 124166, 2021. https://doi.org/10.1016/j.biortech.2020. 124166
  • D. R. S. Lima, O. F. H. Adarme, B. E. L. Baêta, L. V. A. Gurgel and de S. F. Aquino, Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: a kinetic analysis, Industrial Crops and Products, 111, 684-693, 2018. https://doi.org/10.1016/j.indcrop.2017.11.048
  • T. N. B. Dung, C. H. Lay, D. D. Nguyen, S. W. Chang, J. R. Banu, Y. Hong and J. H. Park, Improving the biohydrogen production potential of macroalgal biomass through mild acid dispersion pretreatment, Fuel, 332, 125895, 2023. https://doi.org/10.1016/ j.fuel.2022.125895
  • Y. Wong, T. Wu, J. Juan, A Review of Sustainable Hydrogen Production Using Seed Sludge Via Dark Fermentation, Renewable and Sustainable Energy Reviews, 34, 471-482, 2014. https://doi.org/ 10.1016/j.rser.2014.03.008
  • P. Mishra, F. Ameen, R. M. Zaid, L. Singh, Z. Ab Wahid, M. A. Islam and S. Al Nadhari, Relative effectiveness of substrate-inoculum ratio and initial pH on hydrogen production from palm oil mill effluent: kinetics and statistical optimization, Journal of Cleaner Production, 228, 276-283, 2019. https://doi.org/ 10.1016/j.jclepro.2019.04.317
  • S. Srikanth and S. V. Mohan, Regulating feedback inhibition caused by the accumulated acid intermediates during acidogenic hydrogen production through feed replacement, International Journal of Hydrogen Energy, 39(19), 10028-10040, 2014. https://doi.org/10.1016/j.ijhydene.2014.04.152
  • L. Ge, J. Qi, B. Shao, Z. Ruan, Y. Ren, S. Sui and W. Song, Microbial hydrogen economy alleviates colitis by reprogramming colonocyte metabolism and reinforcing intestinal barrier, Gut Microbes, 14(1), 2013764, 2022. https://doi.org/10.1080/19490976. 2021.2013764
  • A. Sikora, M. Błaszczyk, M. Jurkowski and U. Zielenkiewicz, Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? INTECH open science open minds, 488-514, 2013. http://dx.doi.org/10.5772/50364
  • R. C. da Silva Mazareli, A. C. Villa-Montoya, T. P. Delforno, V. B. Centurion, V. M. de Oliveira,E. L. Silva, and M. B. A. Varesche, Metagenomic analysis of autochthonous microbial biomass from banana waste: Screening design of factors that affect hydrogen production, Biomass and bioenergy, 138, 105573, 2020. https://doi.org/10.1016/j.biombioe.2020.105573
  • A. C. V. Montoya, R. C. da Silva Mazareli, T. P. Delforno, V. B. Centurion, V. M. de Oliveira, E. L. Silva, and M. B. A. Varesche, Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community, International Journal of Hydrogen Energy, 45(7), 4205-4222, 2020. https://doi.org/10.1016/j.ijhydene.2019.12.062
  • M. Pérez-Rangel, J. E. Barboza-Corona, M. Navarro-Díaz, A. E. Escalante and I. Valdez-Vazquez, The duo Clostridium and Lactobacillus linked to hydrogen production from a lignocellulosic substrate, Water Science and Technology, 83(12), 3033-304, 2021. https://doi.org/10.2166/wst.2021.186
  • W. Cieciura, S. Borowski, A. Otlewska, Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation, Renew Energy 153:1226–1237, 2020. https://doi.org/10.1016/ j.renene.2020.02.085
  • A. H. Salem, R. Brunstermann, T. Mietzel, Effect of pretreatment and hydraulic retention time on biohydrogen production from organic wastes, Int Journal of Hydrogen Energy, 1–10, 2018 https://doi.org/10.1016/j.ijhydene.2018.01.114
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Environmental Engineering
Journal Section Environmental Engineering
Authors

Furkan Baş 0000-0002-1312-6871

Hamdi Muratçobanoğlu 0000-0002-4720-8090

Öznur Begüm Gökçek 0000-0003-1730-2905

Sevgi Demirel 0000-0002-5329-591X

Project Number 121Y452
Publication Date January 15, 2023
Submission Date June 21, 2022
Acceptance Date November 12, 2022
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Baş, F., Muratçobanoğlu, H., Gökçek, Ö. B., Demirel, S. (2023). Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 82-87. https://doi.org/10.28948/ngumuh.1133871
AMA Baş F, Muratçobanoğlu H, Gökçek ÖB, Demirel S. Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi. NOHU J. Eng. Sci. January 2023;12(1):82-87. doi:10.28948/ngumuh.1133871
Chicago Baş, Furkan, Hamdi Muratçobanoğlu, Öznur Begüm Gökçek, and Sevgi Demirel. “Elma posasından Biyohidrojen üretimine Farklı yükleme oranlarının Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 1 (January 2023): 82-87. https://doi.org/10.28948/ngumuh.1133871.
EndNote Baş F, Muratçobanoğlu H, Gökçek ÖB, Demirel S (January 1, 2023) Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 82–87.
IEEE F. Baş, H. Muratçobanoğlu, Ö. B. Gökçek, and S. Demirel, “Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi”, NOHU J. Eng. Sci., vol. 12, no. 1, pp. 82–87, 2023, doi: 10.28948/ngumuh.1133871.
ISNAD Baş, Furkan et al. “Elma posasından Biyohidrojen üretimine Farklı yükleme oranlarının Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (January 2023), 82-87. https://doi.org/10.28948/ngumuh.1133871.
JAMA Baş F, Muratçobanoğlu H, Gökçek ÖB, Demirel S. Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi. NOHU J. Eng. Sci. 2023;12:82–87.
MLA Baş, Furkan et al. “Elma posasından Biyohidrojen üretimine Farklı yükleme oranlarının Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 1, 2023, pp. 82-87, doi:10.28948/ngumuh.1133871.
Vancouver Baş F, Muratçobanoğlu H, Gökçek ÖB, Demirel S. Elma posasından biyohidrojen üretimine farklı yükleme oranlarının etkisi. NOHU J. Eng. Sci. 2023;12(1):82-7.

23135