Research Article
BibTex RIS Cite

The influence of selective laser melting and directed energy deposition applications on the microstructure of Inconel 718 alloy

Year 2023, Volume: 12 Issue: 1, 272 - 279, 15.01.2023
https://doi.org/10.28948/ngumuh.1142507

Abstract

Inconel 718 have been widely preferred in aerospace industry due to their outstanding mechanical properties under extreme conditions. Powder bed fusion-based systems, such as selective laser melting (SLM) and electron beam melting (EBM), and directed energy deposition (DED) methods are one of the most popular metal additive manufacturing manners. There are still many unknown on additive manufacturing of Inconel 718 alloy and is requirement to further optimize the production of these alloys. Microstructural traits have significant impact on mechanical properties; therefore, better understanding, the microstructure of DED and SLM processed Inconel 718 would contribute the optimization of additive manufacturing of Inconel 718 alloy. The idea of demonstrating microstructural differences and investigation of microstructures formed using DED and SLM has been adopted. DED and SLM samples are investigated using optical microscope and scanning electron microscope. The results show DED and SLM manners promotes major differences in microstructure of Inconel 718 alloy.

References

  • F. Careri, D. Umbrello, K. Essa, M.M. Attallah and S. Imbrogno, The effect of the heat treatments on the tool wear of hybrid Additive Manufacturing of IN718, Wear, 203617, 470–471, 2021. https://doi.org/ 10.1016/j.wear.2021.203617.
  • Y. Zhang and A. Bandyopadhyay, Direct fabrication of bimetallic Ti6Al4V+Al12Si structures via additive manufacturing, Additive Manufacturing 29, 100783, 2019. https://doi.org/10.1016/j.addma.2019.100783.
  • M. Isik, J.D. Avila and A. Bandyopadhyay, Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants, Additive Manufacturing, 36, 101553, 2020. https://doi.org/10.1016/j.addma.2020.101553.
  • A. Bandyopadhyay, A. Shivaram, M. Isik, J.D. Avila, W.S. Dernell and S. Bose, Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants, Additive Manufacturing, 28, 312–324, 2019. https://doi.org/10.1016/j.addma.2019. 04.020.
  • T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque and M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, 183, 108137, 2019. https://doi.org/10.1016/j.matdes.2019.108137.
  • M. Isik, E. Kisa, B. Koc, M. Yildiz and B. Pehlivanogullari, Topology optimization and manufacturing of engine bracket using electron beam melting, Journal of Additive Manufacturing Technologies, 1, 583, 2021. https://doi.org/ 10.18416/JAMTECH.2111583.
  • M. Isik, E. Kisa, B. Koc, M. Yildiz, B. Pehlivanogullari, A. Orhangul, O. Poyraz and G. Akbulut, Topology optimization and finite elemental analysis for an inconel 718 engine mounting bracket manufactured via electron beam melting, AMCTURKEY Uluslararası Eklemeli İmalat Konferansı, 2019. https://research.sabanciuniv.edu/ 41130/.
  • H. Nagamatsu, H. Sasahara, Y. Mitsutake and T. Hamamoto, Development of a cooperative system for wire and arc additive manufacturing and machining, Additive Manufacturing, 31, 100896, 2020. https://doi.org/10.1016/j.addma.2019.100896.
  • D. Ding, Z. Pan, D. Cuiuri, H. Li, N. Larkin and S. van Duin, Automatic multi-direction slicing algorithms for wire based additive manufacturing, Robotics and Computer-Integrated Manufacturing, 37, 139–150, 2016. https://doi.org/10.1016/j.rcim.2015.09.002.
  • K. Dortkasli, M. Isik and E. Demir, A thermal finite element model with efficient computation of surface heat fluxes for directed-energy deposition process and application to laser metal deposition of IN718, Journal of Manufacturing Processes, 79, 369–382, 2022. https://doi.org/10.1016/j.jmapro.2022.04.049.
  • J.D. Avila, M. Isik and A. Bandyopadhyay, Titanium–Silicon on CoCr alloy for load-bearing ımplants using directed energy deposition-based additive manufacturing, ACS Applied Materials and Interfaces, 12, 51263–51272, 2020. https://doi.org/10.1021/ acsami.0c15279.
  • A.R. Balachandramurthi, J. Moverare, S. Mahade and R. Pederson, Additive manufacturing of alloy 718 via electron beam melting: Effect of post-treatment on the microstructure and the mechanical properties, Materials (Basel), 12, 2018. https://doi.org/ 10.3390/ma12010068.
  • M. Langelaar, An additive manufacturing filter for topology optimization of print-ready designs, Structural and Multidisciplinary Optimization, 55 , 871–883, 2017. https://doi.org/10.1007/s00158-016-1522-2.
  • S.H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.P. Li, Y. Cui and A. Chiba, Electron beam additive manufacturing of Inconel 718 alloy rods: Impact of build direction on microstructure and high-temperature tensile properties, Additive Manufacturing, 23, 457–470, 2018. https://doi.org/10.1016/j.addma.2018. 08.017.
  • Y. Zhai, H. Galarraga and D.A. Lados, Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques, Procedia Engineering, 114, 658–666, 2015. https://doi.org/ 10.1016/j.proeng.2015.08.007.
  • J.K. Watson and K.M.B. Taminger, A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption, Journal of Cleaner Production, 176, 1316–1322, 2018. https://doi.org/10.1016/j.jclepro. 2015. 12.009.
  • H. Yang, G. Jing, P. Gao, Z. Wang and X. Li, Journal of Materials Science & Technology Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718 : From single tracks to cuboid samples, Journal of Materials Science & Technology, 51, 137–150, 2020. https://doi.org/10.1016/j.jmst.2019.09.044.
  • R.B. Li, M. Yao, W.C. Liu and X.C. He, Isolation and determination for δ, γ′ and γ″ phases in Inconel 718 alloy, Scripta Materialia, 46, 635–638, 2002. https://doi.org/10.1016/S1359-6462(02)00041-6.
  • J. Sun and H. Yuan, Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions, International Journal of Fatigue, 119, 89–101, 2019. https://doi.org/10.1016/j.ijfatigue.2018.09.017.
  • G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li and G.F. Chen, Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting, Materials Characterization, 136, 398–406, 2018. https://doi.org/10.1016/j.matchar.2018.01.006.
  • Y. Gao, D. Zhang, M. Cao, R. Chen, Z. Feng, R. Poprawe, J.H. Schleifenbaum and S. Ziegler, Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process, Materials Science and Engineering: A, 767, 138327, 2019. https://doi.org/10.1016/j.msea.2019.138327.
  • M. Godec, S. Malej, D. Feizpour, Donik, M. Balažic, D. Klobčar, L. Pambaguian, M. Conradi and A. Kocijan, Hybrid additive manufacturing of Inconel 718 for future space applications, Materials Characterization, 172, 2021. https://doi.org/10.1016/ j.matchar.2020.110842.
  • B. Bax, R. Rajput, R. Kellet and M. Reisacher, Systematic evaluation of process parameter maps for laser cladding and directed energy deposition, Additive Manufacturing, 21, 487–494, 2018. https://doi.org/ 10.1016/ j.addma.2018.04.002.
  • N. Raghunath and P.M. Pandey, Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering, International Journal of Machine Tools and Manufacture, 47, 985–995, 2007. https://doi.org/10.1016/j.ijmachtools.2006.07.001.
  • M. Isik, M. Niinomi, H. Liu, K. Cho, M. Nakai, Z. Horita, T. Narushima and K. Ueda, Optimization of microstructure and mechanical properties of Co–Cr–Mo alloys by high-pressure torsion and subsequent short annealing, Materials Transactions, 57, 1887–1896, 2016. https://doi.org/10.2320/matertrans. M2016112.
  • E. Atzeni, M. Barletta, F. Calignano, L. Iuliano, G. Rubino and V. Tagliaferri, Abrasive Fluidized Bed (AFB) finishing of AlSi10Mg substrates manufactured by Direct Metal Laser Sintering (DMLS), Additive Manufacturing, 10, 15–23, 2016. https://doi.org/ 10.1016/j.addma.2016.01.005.
  • C. Gobert, E.W. Reutzel, J. Petrich, A.R. Nassar and S. Phoha, Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging., Additive Manufacturing, 21, 517–528, 2018. https://doi.org/10.1016/j.addma.2018.04.005.
  • S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner and J. Cao, A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V, Acta Materialia, 132, 106–117, 2017. https://doi.org/10.1016/j.actamat.2017. 04.027.
  • B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung and E.J. Lavernia, Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations, Metallurgical and Materials Transactions A, 39, 2228–2236, 2008. https://doi.org/10.1007/ s11661 -008-9557-7.
  • W.E. Frazier, Metal additive manufacturing: A review, Journal of Materials Engineering and Performance, 23, 1917–1928, 2014. https://doi.org/10.1007/s11665-014-0958-z.
  • S.G.K. Manikandan, D. Sivakumar and M. Kamaraj, Influence of weld cooling rate, 2019. https://doi.org/10.1016/b978-0-12-818182-9.00004-9.
  • University of Cambridge, Dissemination of IT for the Promotion of Materials Science. https://www.doitpoms.ac.uk/tlplib/solidification_alloys/dendritic.php.
  • H. Sahasrabudhe, S. Bose and A. Bandyopadhyay, Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation, Acta Biomaterialia, 66, 118–128, 2018. https://doi.org/10.1016/ j.actbio.2017.11.022.
  • Y. Huang, D. Wu, D. Zhao, F. Niu and G. Ma, Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition, International Journal of Extreme Manufacturing, 3, 2021. https://doi.org/10.1088/2631-7990/abf71a.
  • M. Miedzinski, Materials for Additive Manufacturing by Direct Energy Deposition. Thesis., Chalmers University of Technology, 2017. https://publications. lib.chalmers.se/records/fulltext/253822/253822.pdf.
  • C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh and S.L. Sing, Review of selective laser melting: Materials and applications, Applied Physics Reviews, 2, 041101, 2015. https://doi.org/10.1063/1.4935926.
  • X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li and G.F. Chen, Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process, Materials & Design, 180, 107915, 2019. https://doi.org/10.1016/ j.matdes.2019.107915.
  • B. Song, S. Wen, C. Yan, Q. Wei and Y. Shi, Chapter 4-Preparation and processing of metal matrix composites, in: B. Song, S. Wen, C. Yan, Q. Wei, Y.B.T.-S.L.M. for M. and M.M.C. Shi (Eds.), 3D Printing Technology Series, Academic Press, 89–208, 2021. https://doi.org/https://doi.org/10.1016/B978-0-08-103005-9.00004-3.
  • A.R. Balachandramurthi, J. Moverare, N. Dixit and R. Pederson, Influence of defects and as-built surface roughness on fatigue properties of additively manufactured Alloy 718, Materials Science and Engineering: A, 735, 463–474, 2018. https://doi.org/10.1016/j.msea.2018.08.072.
  • G.E. Bean, D.B. Witkin, T.D. McLouth, D.N. Patel and R.J. Zaldivar, Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting, Additive Manufacturing, 22, 207–215, 2018. https://doi.org/10.1016/j.addma.2018. 04.024.
  • A. Rollett, G.S. Rohrer and J. Humphreys, Recrystallization and Related Annealing Phenomena, 1–704, 2014. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2.
  • J.E. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, 3, 220–292, 1952. https://doi.org/https://doi.org/10.1016/0502-8205(52)90009-9.
  • J.E. Bailey and P.B. Hirsch, The recrystallization process in some polycrystalline metals, Proceedings of the Royal Society A Mathematical Physical and Engineering Sciencesi 267, 11–30, 1962. https://doi.org/10.1098/rspa.1962.0080.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 60, 130–207, 2014. https://doi.org/10.1016/j.pmatsci.2013.09.002.
  • C. Meier, R.W. Penny, Y. Zou, J.S. Gibbs and A.J. Hart, Thermophysical Phenomena in Metal Additive Manufacturing By Selective Laser Melting: Fundamentals, Modeling, Simulation, and Experimentation, Annual Review of Heat Transfer, 20, 241–316, 2018. https://doi.org/10.1615/ annualrevheattransfer.2018019042.
  • Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun and W. Jun, Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Materials & Design. 116, 531–537, 2017. https://doi.org/10.1016/j.matdes.2016.11.103.
  • A. Shokrani, V. Dhokia and S.T. Newman, Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy, Procedia Manufacturing, 11, 625–632, 2017. https://doi.org/10.1016/j.promfg. 2017.07.160.
  • D.M. D’Addona, S.J. Raykar and M.M. Narke, High Speed Machining of Inconel 718: Tool Wear and Surface Roughness Analysis, Procedia CIRP, 62, 269–274, 2017. https://doi.org/10.1016/j.procir.2017. 03.004.

Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler

Year 2023, Volume: 12 Issue: 1, 272 - 279, 15.01.2023
https://doi.org/10.28948/ngumuh.1142507

Abstract

Nikel-bazlı alaşımlar ve bunlar arasından Inconel 718, zorlu koşullardaki üstün mekanik özellikleri sebebi ile hava-uzay endüstrilerinde sıklıkla tercih edilmektedir. Metal eklemeli imalat teknikleri arasından en popüler olanlar toz yataklı sistemler (seçimli lazer ergitmesi (SLM) ve elektron ışını ergitmesi (EBM)), doğrudan enerji biriktirmesi yöntemleridir. Ancak bu yöntemler ile üretilen Inconel 718 alaşımları üzerinde hala bilinmeyen birçok detay vardır ve üretilen parçaları daha iyi optimize etme ihtiyacı sürmektedir. Mikroyapısal özellikler, mekanik özellikler üzerinde önemli etkiye sahiptir ve DED ve SLM gibi yöntemlerle üretilen mikroyapıları bilmek, aralarında bulunan farkları anlamak endüstri ve akademik topluluğa mikroyapısal optimizasyon açısından katkıda bulunacaktır. Bu motivasyondan yola çıkarak DED ve SLM işleminin Inconel 718 alaşıma mikroyapısal özellikleri inceleme ve farkları ortaya koyma fikri benimsenmiştir. DED ve SLM yöntemleri ile üretilen numuneler optik mikroskop ve taramalı elektron mikroskopları ile incelenmiştir. Elde edilen sonuçlar iki ayrı yöntemle üretilen mikroyapı üzerinde belirgin farklılıklar oluşabildiğini göstermiştir.

References

  • F. Careri, D. Umbrello, K. Essa, M.M. Attallah and S. Imbrogno, The effect of the heat treatments on the tool wear of hybrid Additive Manufacturing of IN718, Wear, 203617, 470–471, 2021. https://doi.org/ 10.1016/j.wear.2021.203617.
  • Y. Zhang and A. Bandyopadhyay, Direct fabrication of bimetallic Ti6Al4V+Al12Si structures via additive manufacturing, Additive Manufacturing 29, 100783, 2019. https://doi.org/10.1016/j.addma.2019.100783.
  • M. Isik, J.D. Avila and A. Bandyopadhyay, Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants, Additive Manufacturing, 36, 101553, 2020. https://doi.org/10.1016/j.addma.2020.101553.
  • A. Bandyopadhyay, A. Shivaram, M. Isik, J.D. Avila, W.S. Dernell and S. Bose, Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants, Additive Manufacturing, 28, 312–324, 2019. https://doi.org/10.1016/j.addma.2019. 04.020.
  • T. Maconachie, M. Leary, B. Lozanovski, X. Zhang, M. Qian, O. Faruque and M. Brandt, SLM lattice structures: Properties, performance, applications and challenges, Materials & Design, 183, 108137, 2019. https://doi.org/10.1016/j.matdes.2019.108137.
  • M. Isik, E. Kisa, B. Koc, M. Yildiz and B. Pehlivanogullari, Topology optimization and manufacturing of engine bracket using electron beam melting, Journal of Additive Manufacturing Technologies, 1, 583, 2021. https://doi.org/ 10.18416/JAMTECH.2111583.
  • M. Isik, E. Kisa, B. Koc, M. Yildiz, B. Pehlivanogullari, A. Orhangul, O. Poyraz and G. Akbulut, Topology optimization and finite elemental analysis for an inconel 718 engine mounting bracket manufactured via electron beam melting, AMCTURKEY Uluslararası Eklemeli İmalat Konferansı, 2019. https://research.sabanciuniv.edu/ 41130/.
  • H. Nagamatsu, H. Sasahara, Y. Mitsutake and T. Hamamoto, Development of a cooperative system for wire and arc additive manufacturing and machining, Additive Manufacturing, 31, 100896, 2020. https://doi.org/10.1016/j.addma.2019.100896.
  • D. Ding, Z. Pan, D. Cuiuri, H. Li, N. Larkin and S. van Duin, Automatic multi-direction slicing algorithms for wire based additive manufacturing, Robotics and Computer-Integrated Manufacturing, 37, 139–150, 2016. https://doi.org/10.1016/j.rcim.2015.09.002.
  • K. Dortkasli, M. Isik and E. Demir, A thermal finite element model with efficient computation of surface heat fluxes for directed-energy deposition process and application to laser metal deposition of IN718, Journal of Manufacturing Processes, 79, 369–382, 2022. https://doi.org/10.1016/j.jmapro.2022.04.049.
  • J.D. Avila, M. Isik and A. Bandyopadhyay, Titanium–Silicon on CoCr alloy for load-bearing ımplants using directed energy deposition-based additive manufacturing, ACS Applied Materials and Interfaces, 12, 51263–51272, 2020. https://doi.org/10.1021/ acsami.0c15279.
  • A.R. Balachandramurthi, J. Moverare, S. Mahade and R. Pederson, Additive manufacturing of alloy 718 via electron beam melting: Effect of post-treatment on the microstructure and the mechanical properties, Materials (Basel), 12, 2018. https://doi.org/ 10.3390/ma12010068.
  • M. Langelaar, An additive manufacturing filter for topology optimization of print-ready designs, Structural and Multidisciplinary Optimization, 55 , 871–883, 2017. https://doi.org/10.1007/s00158-016-1522-2.
  • S.H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y.P. Li, Y. Cui and A. Chiba, Electron beam additive manufacturing of Inconel 718 alloy rods: Impact of build direction on microstructure and high-temperature tensile properties, Additive Manufacturing, 23, 457–470, 2018. https://doi.org/10.1016/j.addma.2018. 08.017.
  • Y. Zhai, H. Galarraga and D.A. Lados, Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques, Procedia Engineering, 114, 658–666, 2015. https://doi.org/ 10.1016/j.proeng.2015.08.007.
  • J.K. Watson and K.M.B. Taminger, A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption, Journal of Cleaner Production, 176, 1316–1322, 2018. https://doi.org/10.1016/j.jclepro. 2015. 12.009.
  • H. Yang, G. Jing, P. Gao, Z. Wang and X. Li, Journal of Materials Science & Technology Effects of circular beam oscillation technique on formability and solidification behaviour of selective laser melted Inconel 718 : From single tracks to cuboid samples, Journal of Materials Science & Technology, 51, 137–150, 2020. https://doi.org/10.1016/j.jmst.2019.09.044.
  • R.B. Li, M. Yao, W.C. Liu and X.C. He, Isolation and determination for δ, γ′ and γ″ phases in Inconel 718 alloy, Scripta Materialia, 46, 635–638, 2002. https://doi.org/10.1016/S1359-6462(02)00041-6.
  • J. Sun and H. Yuan, Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions, International Journal of Fatigue, 119, 89–101, 2019. https://doi.org/10.1016/j.ijfatigue.2018.09.017.
  • G.H. Cao, T.Y. Sun, C.H. Wang, X. Li, M. Liu, Z.X. Zhang, P.F. Hu, A.M. Russell, R. Schneider, D. Gerthsen, Z.J. Zhou, C.P. Li and G.F. Chen, Investigations of γ′, γ″ and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting, Materials Characterization, 136, 398–406, 2018. https://doi.org/10.1016/j.matchar.2018.01.006.
  • Y. Gao, D. Zhang, M. Cao, R. Chen, Z. Feng, R. Poprawe, J.H. Schleifenbaum and S. Ziegler, Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process, Materials Science and Engineering: A, 767, 138327, 2019. https://doi.org/10.1016/j.msea.2019.138327.
  • M. Godec, S. Malej, D. Feizpour, Donik, M. Balažic, D. Klobčar, L. Pambaguian, M. Conradi and A. Kocijan, Hybrid additive manufacturing of Inconel 718 for future space applications, Materials Characterization, 172, 2021. https://doi.org/10.1016/ j.matchar.2020.110842.
  • B. Bax, R. Rajput, R. Kellet and M. Reisacher, Systematic evaluation of process parameter maps for laser cladding and directed energy deposition, Additive Manufacturing, 21, 487–494, 2018. https://doi.org/ 10.1016/ j.addma.2018.04.002.
  • N. Raghunath and P.M. Pandey, Improving accuracy through shrinkage modelling by using Taguchi method in selective laser sintering, International Journal of Machine Tools and Manufacture, 47, 985–995, 2007. https://doi.org/10.1016/j.ijmachtools.2006.07.001.
  • M. Isik, M. Niinomi, H. Liu, K. Cho, M. Nakai, Z. Horita, T. Narushima and K. Ueda, Optimization of microstructure and mechanical properties of Co–Cr–Mo alloys by high-pressure torsion and subsequent short annealing, Materials Transactions, 57, 1887–1896, 2016. https://doi.org/10.2320/matertrans. M2016112.
  • E. Atzeni, M. Barletta, F. Calignano, L. Iuliano, G. Rubino and V. Tagliaferri, Abrasive Fluidized Bed (AFB) finishing of AlSi10Mg substrates manufactured by Direct Metal Laser Sintering (DMLS), Additive Manufacturing, 10, 15–23, 2016. https://doi.org/ 10.1016/j.addma.2016.01.005.
  • C. Gobert, E.W. Reutzel, J. Petrich, A.R. Nassar and S. Phoha, Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging., Additive Manufacturing, 21, 517–528, 2018. https://doi.org/10.1016/j.addma.2018.04.005.
  • S.J. Wolff, S. Lin, E.J. Faierson, W.K. Liu, G.J. Wagner and J. Cao, A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V, Acta Materialia, 132, 106–117, 2017. https://doi.org/10.1016/j.actamat.2017. 04.027.
  • B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung and E.J. Lavernia, Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations, Metallurgical and Materials Transactions A, 39, 2228–2236, 2008. https://doi.org/10.1007/ s11661 -008-9557-7.
  • W.E. Frazier, Metal additive manufacturing: A review, Journal of Materials Engineering and Performance, 23, 1917–1928, 2014. https://doi.org/10.1007/s11665-014-0958-z.
  • S.G.K. Manikandan, D. Sivakumar and M. Kamaraj, Influence of weld cooling rate, 2019. https://doi.org/10.1016/b978-0-12-818182-9.00004-9.
  • University of Cambridge, Dissemination of IT for the Promotion of Materials Science. https://www.doitpoms.ac.uk/tlplib/solidification_alloys/dendritic.php.
  • H. Sahasrabudhe, S. Bose and A. Bandyopadhyay, Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: Processing and wear induced damage evaluation, Acta Biomaterialia, 66, 118–128, 2018. https://doi.org/10.1016/ j.actbio.2017.11.022.
  • Y. Huang, D. Wu, D. Zhao, F. Niu and G. Ma, Investigation of melt-growth alumina/aluminum titanate composite ceramics prepared by directed energy deposition, International Journal of Extreme Manufacturing, 3, 2021. https://doi.org/10.1088/2631-7990/abf71a.
  • M. Miedzinski, Materials for Additive Manufacturing by Direct Energy Deposition. Thesis., Chalmers University of Technology, 2017. https://publications. lib.chalmers.se/records/fulltext/253822/253822.pdf.
  • C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh and S.L. Sing, Review of selective laser melting: Materials and applications, Applied Physics Reviews, 2, 041101, 2015. https://doi.org/10.1063/1.4935926.
  • X. Li, J.J. Shi, G.H. Cao, A.M. Russell, Z.J. Zhou, C.P. Li and G.F. Chen, Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process, Materials & Design, 180, 107915, 2019. https://doi.org/10.1016/ j.matdes.2019.107915.
  • B. Song, S. Wen, C. Yan, Q. Wei and Y. Shi, Chapter 4-Preparation and processing of metal matrix composites, in: B. Song, S. Wen, C. Yan, Q. Wei, Y.B.T.-S.L.M. for M. and M.M.C. Shi (Eds.), 3D Printing Technology Series, Academic Press, 89–208, 2021. https://doi.org/https://doi.org/10.1016/B978-0-08-103005-9.00004-3.
  • A.R. Balachandramurthi, J. Moverare, N. Dixit and R. Pederson, Influence of defects and as-built surface roughness on fatigue properties of additively manufactured Alloy 718, Materials Science and Engineering: A, 735, 463–474, 2018. https://doi.org/10.1016/j.msea.2018.08.072.
  • G.E. Bean, D.B. Witkin, T.D. McLouth, D.N. Patel and R.J. Zaldivar, Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting, Additive Manufacturing, 22, 207–215, 2018. https://doi.org/10.1016/j.addma.2018. 04.024.
  • A. Rollett, G.S. Rohrer and J. Humphreys, Recrystallization and Related Annealing Phenomena, 1–704, 2014. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2.
  • J.E. Burke and D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, 3, 220–292, 1952. https://doi.org/https://doi.org/10.1016/0502-8205(52)90009-9.
  • J.E. Bailey and P.B. Hirsch, The recrystallization process in some polycrystalline metals, Proceedings of the Royal Society A Mathematical Physical and Engineering Sciencesi 267, 11–30, 1962. https://doi.org/10.1098/rspa.1962.0080.
  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 60, 130–207, 2014. https://doi.org/10.1016/j.pmatsci.2013.09.002.
  • C. Meier, R.W. Penny, Y. Zou, J.S. Gibbs and A.J. Hart, Thermophysical Phenomena in Metal Additive Manufacturing By Selective Laser Melting: Fundamentals, Modeling, Simulation, and Experimentation, Annual Review of Heat Transfer, 20, 241–316, 2018. https://doi.org/10.1615/ annualrevheattransfer.2018019042.
  • Z. Baicheng, L. Xiaohua, B. Jiaming, G. Junfeng, W. Pan, S. Chen-nan, N. Muiling, Q. Guojun and W. Jun, Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing, Materials & Design. 116, 531–537, 2017. https://doi.org/10.1016/j.matdes.2016.11.103.
  • A. Shokrani, V. Dhokia and S.T. Newman, Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy, Procedia Manufacturing, 11, 625–632, 2017. https://doi.org/10.1016/j.promfg. 2017.07.160.
  • D.M. D’Addona, S.J. Raykar and M.M. Narke, High Speed Machining of Inconel 718: Tool Wear and Surface Roughness Analysis, Procedia CIRP, 62, 269–274, 2017. https://doi.org/10.1016/j.procir.2017. 03.004.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Murat Işık 0000-0002-6116-1882

Publication Date January 15, 2023
Submission Date July 8, 2022
Acceptance Date October 5, 2022
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Işık, M. (2023). Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 272-279. https://doi.org/10.28948/ngumuh.1142507
AMA Işık M. Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler. NOHU J. Eng. Sci. January 2023;12(1):272-279. doi:10.28948/ngumuh.1142507
Chicago Işık, Murat. “Doğrudan Enerji Biriktirmesi Ve seçimli Lazer Ergitmesi uygulamalarının Inconel 718 mikroyapısında Yol açtığı değişimler”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 1 (January 2023): 272-79. https://doi.org/10.28948/ngumuh.1142507.
EndNote Işık M (January 1, 2023) Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 272–279.
IEEE M. Işık, “Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler”, NOHU J. Eng. Sci., vol. 12, no. 1, pp. 272–279, 2023, doi: 10.28948/ngumuh.1142507.
ISNAD Işık, Murat. “Doğrudan Enerji Biriktirmesi Ve seçimli Lazer Ergitmesi uygulamalarının Inconel 718 mikroyapısında Yol açtığı değişimler”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (January 2023), 272-279. https://doi.org/10.28948/ngumuh.1142507.
JAMA Işık M. Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler. NOHU J. Eng. Sci. 2023;12:272–279.
MLA Işık, Murat. “Doğrudan Enerji Biriktirmesi Ve seçimli Lazer Ergitmesi uygulamalarının Inconel 718 mikroyapısında Yol açtığı değişimler”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 1, 2023, pp. 272-9, doi:10.28948/ngumuh.1142507.
Vancouver Işık M. Doğrudan enerji biriktirmesi ve seçimli lazer ergitmesi uygulamalarının Inconel 718 mikroyapısında yol açtığı değişimler. NOHU J. Eng. Sci. 2023;12(1):272-9.

download