In this study, MoS2 thin films were grown using two-step approach, which is based on employing both PVD and CVD techniques. The films were obtained initially by sputtering 1nm Mo film in the PVD system and followed by sulphurization of the film in CVD at 700oC. The grown films were optimized employing different sulphurization times. The main difference in our study from the current literature is using preheated CVD furnace (700oC) ahead of sulphurization. The films quality are then investigated using Raman and Photoluminance spectrometer as well as AFM measurements. The Raman spectrums indicate that two characteristic vibration modes of 2H-MoS2 phase were observed in all samples, however, vibration modes of 1T-MoS2 phase were also observed in some films at low sulphurization time. These results were also in line with PL measurements that confirm the direct band transition of the MoS2 films. The surface topography of the films were investigated by AFM for MoS2 films obtained by the sulfurization of 1 nm-thick Mo film in 15 minutes at 700oC which shows MoS2 crystals in triangle shape.
Nigde Omer Halisdemir University Scientific Projects Unit
Project Number
FMT 2021/4-ÖNAP.
Thanks
The authors gratefully acknowledge funding from Nigde Omer Halisdemir University Scientific Projects Unit under a project number of FMT 2021/4-ÖNAP.
References
A.K. Geim, K.S. Novoselov, The rise of graphene, in: Nanoscience and technology: a collection of reviews from nature journals, World Scientific, pp. 11-19, 2010. https://doi.org/10.1063/1.5091753.
H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation, Physical Review B, 88 035301(2013). https://doi.org/10.1103/PhysRevB.88.035301.
J.W. Park, H.S. So, S. Kim, S.-H. Choi, H. Lee, J. Lee, C. Lee, Y. Kim, Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers, Journal of Applied Physics, 116 183509(2014). https://doi.org/10.1063/1.4901464.
H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding, ACS nano, 8 5738-5745(2014). https://doi.org/10.1021/nn500532f.
S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions, Angewandte Chemie, 127 3155-3158(2015). https://doi.org/10.1002/ange.201411246.
S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano letters, 12 5576-5580(2012). https://doi.org/10.1002/ange.201411246.
A. Ambrosi, Z. Sofer, M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition, Chemical Communications, 51, 8450-8453(2015). https://doi.org/10.1039/C5CC00803.
A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, New route for stabilization of 1T-WS2 and MoS2 phases, The Journal of Physical Chemistry C, 115 24586-24591(2011). https://doi.org/10.1021/jp2076325.
S. Presolski, M. Pumera, Covalent functionalization of MoS2, Materials Today, 19 140-145(2016). https://doi.org/10.1021/jp2076325.
C. Muratore, J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P. Shamberger, M. McConney, R. Naguy, A. Voevodin, Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition, Applied Physics Letters, 104 261604(2014). https://doi.org/10.1063/1.4885391.
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate, Small, 8 966-971(2012). https://doi.org/10.1002/smll.201102654.
B. Zheng, Y. Chen, Controllable growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace, in: Materials Science and Engineering Conference Series, pp. 012085, 2017. https://doi.org/10.1088/1757-899X/274/1/012085.
Y. Liu, L. Ren, X. Qi, L. Yang, G. Hao, J. Li, X. Wei, J. Zhong, Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route, Journal of alloys and compounds, 571 37-42(2013). https://doi.org/10.1016/j.jallcom.2013.03.031.
D. Song, Y. Wang, X. Lu, Y. Gao, Y. Li, F. Gao, Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides, Sensors and Actuators B: Chemical, 267 5-13(2018). https://doi.org/10.1016/j.snb.2018.04.016.
L. Li, R. Long, O.V. Prezhdo, Why chemical vapor deposition grown MoS2 samples outperform physical vapor deposition samples: time-domain ab initio analysis, Nano letters, 18 4008-4014(2018), https://doi.org/10.1021/acs.nanolett.8b01501.
S. Ghosh, S.S. Withanage, B. Chamlagain, S.I. Khondaker, S. Harish, B.B.J.E. Saha, Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors, 203 117918(2020), https://doi.org/10.1016/j.energy.2020.117918.
R. Shahzad, T. Kim, S.-W.J.T.S.F. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis, 641 79-86(2017), https://doi.org/10.1016/j.energy.2020.117918.
B.R. Carvalho, L.M. Malard, J.M. Alves, C. Fantini, M.A. Pimenta, Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering, Physical review letters, 114 136403(2015), https://doi.org/10.1103/PhysRevLett.114.136403.
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering, Advanced Functional Materials, 22 1385-1390(2012), https://doi.org/10.1002/adfm.201102111.
K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano letters, 12 1538-1544(2012), https://doi.org/10.1021/nl2043612.
I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K. Man, M. Upmanyu, K.M. Dani, G. Gupta, S. Talapatra, A.D. Mohite, Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality, ACS nano, 9 8822-8832(2015), https://doi.org/10.1021/acsnano.5b02019.
M.S. Kim, G. Nam, S. Park, H. Kim, G.H. Han, J. Lee, K.P. Dhakal, J.-Y. Leem, Y.H. Lee, J. Kim, Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment, Thin Solid Films, 590 318-323(2015), https://doi.org/10.1016/j.tsf.2015.06.024.
C.-H. Lee, G.-H. Lee, A.M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, Atomically thin p–n junctions with van der Waals heterointerfaces, Nature nanotechnology, 9 676(2014), https://doi.org/10.1038/nnano.2014.150.
N. Choudhary, J. Park, J.Y. Hwang, W. Choi, Growth of large-scale and thickness-modulated MoS2 nanosheets, ACS applied materials & interfaces, 6 21215-21222(2014), https://doi.org/10.1021/am506198b.
M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, P. Jena, Structures and phase transition of a MoS2 monolayer, The Journal of Physical Chemistry C, 118 1515-1522(2014), https://doi.org/10.1021/jp4076355.
Y. Tian, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Generation of Monolayer MoS2 with 1T Phase by Spatial‐Confinement‐Induced Ultrathin PPy Anchoring for High‐Performance Supercapacitor, Advanced Materials Interfaces, 6 1900162(2019), https://doi.org/10.1002/admi.201900162.
C. Guo, J. Pan, H. Li, T. Lin, P. Liu, C. Song, D. Wang, G. Mu, X. Lai, H. Zhang, Observation of superconductivity in 1T′-MoS2 nanosheets, Journal of Materials Chemistry C, 5 10855-10860(2017), https://doi.org/10.1039/C7TC03749J.
U. Gupta, B. Naidu, U. Maitra, A. Singh, S.N. Shirodkar, U.V. Waghmare, C. Rao, Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction, APL Materials, 2 092802(2014), https://doi.org/10.1063/1.4892976.
L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng, Optimizing hybridization of 1T and 2H phases in MoS2 monolayers to improve capacitances of supercapacitors, Materials Research Letters, 3 177-183(2015), https://doi.org/10.1080/21663831.2015.1057654.
L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers, Nature materials, 17 1108-1114(2018), https://doi.org/10.1038/s41563-018-0187-1
Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, High phase-purity 1T′-MoS 2-and 1T′-MoSe 2-layered crystals, Nature chemistry, 10 638-643(2018), https://doi.org/10.1038/s41557-018-0035-6.
J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, Argon plasma induced phase transition in monolayer MoS2, Journal of the American Chemical Society, 139 10216-10219(2017), https://doi.org/10.1021/jacs.7b05765.
F. Chen, W. Su, S. Ding, L. Fu, Growth and optical properties of large-scale MoS2 films with different thickness, Ceramics International, 45 15091-15096(2019), https://doi.org/10.1016/j.ceramint.2019.04.248.
S.-H. Su, W.-T. Hsu, C.-L. Hsu, C.-H. Chen, M.-H. Chiu, Y.-C. Lin, W.-H. Chang, K. Suenaga, -.H. He Jr, L.-J. Li, Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys, Frontiers in Energy Research, 2 27(2014), https://doi.org/10.3389/fenrg.2014.00027.
İki adımlı yaklaşım kullanılarak MoS2 ince filmlerin sentezlenmesi
Year 2023,
Volume: 12 Issue: 1, 297 - 301, 15.01.2023
Bu çalışmada, hem PVD hem de CVD tekniklerinin kullanılmasına dayanan iki aşamalı yaklaşım kullanılarak MoS2 ince filmler büyütülmüştür. Filmler ilk olarak 1 nm Mo filmin PVD sisteminde saçtırma yöntemiyle ve ardından filmin CVD' de 700oC' de sülfürlenerek elde edilmiştir. Büyütülmüş filmler, farklı sülfürizasyon süreleri kullanılarak optimize edilmiştir. Çalışmamızın güncel literatürden temel farkı, kükürtleme öncesinde önceden ısıtılmış CVD fırını (700oC) kullanılmasıdır. Filmlerin kalitesi daha sonra AFM ölçümlerinin yanı sıra Raman ve Fotolüminesans spektrometresi kullanılarak araştırılmıştır. Raman spektrumları, tüm örneklerde 2H-MoS2 fazının iki karakteristik titreşim modunun gözlemlendiğini, ancak bazı filmlerde düşük sülfürizasyon süresinde 1T-MoS2 fazının titreşim modlarının da gözlendiğini göstermektedir. Bu sonuçlar ayrıca MoS2 filmlerinin doğrudan bant geçişini doğrulayan PL ölçümleriyle de uyumludur. Filmlerin yüzey topografyası, 1 nm kalınlığında Mo filminin 700oC'de 15 dakikada sülfürlenerek elde edilen ve MoS2 kristallerini üçgen şeklinde gösteren MoS2 filmleri için AFM ile incelenmiştir.
A.K. Geim, K.S. Novoselov, The rise of graphene, in: Nanoscience and technology: a collection of reviews from nature journals, World Scientific, pp. 11-19, 2010. https://doi.org/10.1063/1.5091753.
H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation, Physical Review B, 88 035301(2013). https://doi.org/10.1103/PhysRevB.88.035301.
J.W. Park, H.S. So, S. Kim, S.-H. Choi, H. Lee, J. Lee, C. Lee, Y. Kim, Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers, Journal of Applied Physics, 116 183509(2014). https://doi.org/10.1063/1.4901464.
H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding, ACS nano, 8 5738-5745(2014). https://doi.org/10.1021/nn500532f.
S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions, Angewandte Chemie, 127 3155-3158(2015). https://doi.org/10.1002/ange.201411246.
S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2, Nano letters, 12 5576-5580(2012). https://doi.org/10.1002/ange.201411246.
A. Ambrosi, Z. Sofer, M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition, Chemical Communications, 51, 8450-8453(2015). https://doi.org/10.1039/C5CC00803.
A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, New route for stabilization of 1T-WS2 and MoS2 phases, The Journal of Physical Chemistry C, 115 24586-24591(2011). https://doi.org/10.1021/jp2076325.
S. Presolski, M. Pumera, Covalent functionalization of MoS2, Materials Today, 19 140-145(2016). https://doi.org/10.1021/jp2076325.
C. Muratore, J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P. Shamberger, M. McConney, R. Naguy, A. Voevodin, Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition, Applied Physics Letters, 104 261604(2014). https://doi.org/10.1063/1.4885391.
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate, Small, 8 966-971(2012). https://doi.org/10.1002/smll.201102654.
B. Zheng, Y. Chen, Controllable growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace, in: Materials Science and Engineering Conference Series, pp. 012085, 2017. https://doi.org/10.1088/1757-899X/274/1/012085.
Y. Liu, L. Ren, X. Qi, L. Yang, G. Hao, J. Li, X. Wei, J. Zhong, Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route, Journal of alloys and compounds, 571 37-42(2013). https://doi.org/10.1016/j.jallcom.2013.03.031.
D. Song, Y. Wang, X. Lu, Y. Gao, Y. Li, F. Gao, Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides, Sensors and Actuators B: Chemical, 267 5-13(2018). https://doi.org/10.1016/j.snb.2018.04.016.
L. Li, R. Long, O.V. Prezhdo, Why chemical vapor deposition grown MoS2 samples outperform physical vapor deposition samples: time-domain ab initio analysis, Nano letters, 18 4008-4014(2018), https://doi.org/10.1021/acs.nanolett.8b01501.
S. Ghosh, S.S. Withanage, B. Chamlagain, S.I. Khondaker, S. Harish, B.B.J.E. Saha, Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors, 203 117918(2020), https://doi.org/10.1016/j.energy.2020.117918.
R. Shahzad, T. Kim, S.-W.J.T.S.F. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis, 641 79-86(2017), https://doi.org/10.1016/j.energy.2020.117918.
B.R. Carvalho, L.M. Malard, J.M. Alves, C. Fantini, M.A. Pimenta, Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering, Physical review letters, 114 136403(2015), https://doi.org/10.1103/PhysRevLett.114.136403.
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering, Advanced Functional Materials, 22 1385-1390(2012), https://doi.org/10.1002/adfm.201102111.
K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano letters, 12 1538-1544(2012), https://doi.org/10.1021/nl2043612.
I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K. Man, M. Upmanyu, K.M. Dani, G. Gupta, S. Talapatra, A.D. Mohite, Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality, ACS nano, 9 8822-8832(2015), https://doi.org/10.1021/acsnano.5b02019.
M.S. Kim, G. Nam, S. Park, H. Kim, G.H. Han, J. Lee, K.P. Dhakal, J.-Y. Leem, Y.H. Lee, J. Kim, Photoluminescence wavelength variation of monolayer MoS2 by oxygen plasma treatment, Thin Solid Films, 590 318-323(2015), https://doi.org/10.1016/j.tsf.2015.06.024.
C.-H. Lee, G.-H. Lee, A.M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, Atomically thin p–n junctions with van der Waals heterointerfaces, Nature nanotechnology, 9 676(2014), https://doi.org/10.1038/nnano.2014.150.
N. Choudhary, J. Park, J.Y. Hwang, W. Choi, Growth of large-scale and thickness-modulated MoS2 nanosheets, ACS applied materials & interfaces, 6 21215-21222(2014), https://doi.org/10.1021/am506198b.
M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, P. Jena, Structures and phase transition of a MoS2 monolayer, The Journal of Physical Chemistry C, 118 1515-1522(2014), https://doi.org/10.1021/jp4076355.
Y. Tian, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Generation of Monolayer MoS2 with 1T Phase by Spatial‐Confinement‐Induced Ultrathin PPy Anchoring for High‐Performance Supercapacitor, Advanced Materials Interfaces, 6 1900162(2019), https://doi.org/10.1002/admi.201900162.
C. Guo, J. Pan, H. Li, T. Lin, P. Liu, C. Song, D. Wang, G. Mu, X. Lai, H. Zhang, Observation of superconductivity in 1T′-MoS2 nanosheets, Journal of Materials Chemistry C, 5 10855-10860(2017), https://doi.org/10.1039/C7TC03749J.
U. Gupta, B. Naidu, U. Maitra, A. Singh, S.N. Shirodkar, U.V. Waghmare, C. Rao, Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction, APL Materials, 2 092802(2014), https://doi.org/10.1063/1.4892976.
L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng, Optimizing hybridization of 1T and 2H phases in MoS2 monolayers to improve capacitances of supercapacitors, Materials Research Letters, 3 177-183(2015), https://doi.org/10.1080/21663831.2015.1057654.
L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers, Nature materials, 17 1108-1114(2018), https://doi.org/10.1038/s41563-018-0187-1
Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, High phase-purity 1T′-MoS 2-and 1T′-MoSe 2-layered crystals, Nature chemistry, 10 638-643(2018), https://doi.org/10.1038/s41557-018-0035-6.
J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, Argon plasma induced phase transition in monolayer MoS2, Journal of the American Chemical Society, 139 10216-10219(2017), https://doi.org/10.1021/jacs.7b05765.
F. Chen, W. Su, S. Ding, L. Fu, Growth and optical properties of large-scale MoS2 films with different thickness, Ceramics International, 45 15091-15096(2019), https://doi.org/10.1016/j.ceramint.2019.04.248.
S.-H. Su, W.-T. Hsu, C.-L. Hsu, C.-H. Chen, M.-H. Chiu, Y.-C. Lin, W.-H. Chang, K. Suenaga, -.H. He Jr, L.-J. Li, Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys, Frontiers in Energy Research, 2 27(2014), https://doi.org/10.3389/fenrg.2014.00027.
Erkan, S., Altuntepe, A., & Zan, R. (2023). Synthesis of MoS2 thin films using the two-step approach. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 297-301. https://doi.org/10.28948/ngumuh.1184705
AMA
Erkan S, Altuntepe A, Zan R. Synthesis of MoS2 thin films using the two-step approach. NOHU J. Eng. Sci. January 2023;12(1):297-301. doi:10.28948/ngumuh.1184705
Chicago
Erkan, Serkan, Ali Altuntepe, and Recep Zan. “Synthesis of MoS2 Thin Films Using the Two-Step Approach”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 1 (January 2023): 297-301. https://doi.org/10.28948/ngumuh.1184705.
EndNote
Erkan S, Altuntepe A, Zan R (January 1, 2023) Synthesis of MoS2 thin films using the two-step approach. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 297–301.
IEEE
S. Erkan, A. Altuntepe, and R. Zan, “Synthesis of MoS2 thin films using the two-step approach”, NOHU J. Eng. Sci., vol. 12, no. 1, pp. 297–301, 2023, doi: 10.28948/ngumuh.1184705.
ISNAD
Erkan, Serkan et al. “Synthesis of MoS2 Thin Films Using the Two-Step Approach”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (January 2023), 297-301. https://doi.org/10.28948/ngumuh.1184705.
JAMA
Erkan S, Altuntepe A, Zan R. Synthesis of MoS2 thin films using the two-step approach. NOHU J. Eng. Sci. 2023;12:297–301.
MLA
Erkan, Serkan et al. “Synthesis of MoS2 Thin Films Using the Two-Step Approach”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 1, 2023, pp. 297-01, doi:10.28948/ngumuh.1184705.
Vancouver
Erkan S, Altuntepe A, Zan R. Synthesis of MoS2 thin films using the two-step approach. NOHU J. Eng. Sci. 2023;12(1):297-301.