Research Article
BibTex RIS Cite

NACA 0012 kanat profilinin aerodinamik performansı üzerinde toz partiküllerinin etkilerinin incelenmesi

Year 2023, Volume: 12 Issue: 1, 302 - 309, 15.01.2023
https://doi.org/10.28948/ngumuh.1216401

Abstract

Bu çalışmanın amacı, NACA 0012'de akış sırasında oluşan türbülans kinetik enerji yapılarının ve havadaki farklı çaplardaki ve farklı akış hızlarındaki parçacıkların farklı bölgesel alanlarda aerodinamik performans özelliklerine etkilerini incelemektir. Tek ve iki fazlı akışkan akışları çalışılmıştır. Ansys Fluent Hesaplamalı Akışkanlar Dinamiği (CFD) kodunu kullanarak. Saf hava ve kum parçacıkları içeren hava için elde edilen hesaplama sonuçları, doğrulama için literatürde elde edilen sayısal değerlerle karşılaştırılmıştır. Sayısal testlerden elde edilen sonuçlar, literatürdeki değer ile iyi bir uyum göstermektedir. Bu sonuçlar kanat profilinin kuyruk bölgesinde meydana gelen türbülans kinetik enerji değerinin hücum açısının artmasıyla arttığını ve yüksek hücum açısında kanat profilinin üst bölgesine doğru kaydığını göstermektedir. Ayrıca, yüksek hücum açısında kanat profilinin üst bölgesi, düşük Reynolds sayılarında viskoz etkilerden dolayı genişlemektedir. Kanat profillerinin sayısal testlerinde ve rüzgar tünelinde deneysel testlerde elde edilen sürükleme ve kaldırma katsayıları, uygulama alanındaki değerlerden farklılık gösterecektir. Çünkü kanat profillerinin farklı bölgesel ortamlarda çalışmasında, havada her zaman çeşitli konsantrasyonlarda ve çaplarda parçacıklar bulunmaktadır. Bu durumda sürükleme katsayısı artmakta ve kaldırma katsayısı azalmaktadır.

References

  • R.L. Fearn, Airfoil aerodynamics using panel methods, The Mathematica Journal, 10(4), 1-17, 2008. https://dx.doi.org/10.3888/tmj.10.4-6.
  • C. E. Douvi, I. A. Tsavalos and P. D. Margaris, Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil, Journal of Mechanical Engineering Research, 4(3), 100-111, 2012. https://doi.org/10.5897/JMER11.074
  • M. Adel, A comparative study for different shapes of airfoils, International Journal of Mechanical Engineering, 4, 27-39, 2019.
  • A. Bodavula, U. Guven and R. Yadav, Numerical analysis of protrusion effect over an airfoil at Reynolds Number 10-5, International Journal of Recent Technology and Engineering, 8(2), 2583-2588, 2019.
  • V. Iliev, M. Lazareviki and V. Aleksoski, Numerical and experimental investigation of airfoil performance in a wind tunnel, American Journal of Engineering Research, 9(4), 119-124, 2020.
  • J. C. M. Lin and L. L. Pauley, Low-Reynolds-number separation on an airfoil, AIAA Journal, 34(8), 1570-1577, 1996. https://doi.org/10.2514/3.13273
  • A. Choudhry, M. Arjomandi and R. Kelso, A study of long separation bubble on thick airfoils and its consequent effects, International Journal of Heat and Fluid Flow, 52, 84-96, 2015. https://doi.org/10.1016/j.ijheatfluidflow.2014.12.001
  • P. Jimenez, P. Lichota, D. Agudelo and K. Rogowski, Experimental validation of total energy control system for UAVs, Energies, 13(14), 1-18, 2020. https://doi.org/10.3390/en13010014
  • K. Rogowski, G. Królak and G. Bangga, Numerical study on the aerodynamic characteristics of the NACA 0018 airfoil at low Reynolds Number for Darrieus wind turbines using the transition SST model, Processes, 9(3), 477, 2021. https://doi.org/10.3390/pr9030477
  • M. Umapathi and N. Soni, Comparative analysis of airfoil NACA 2313 and NACA 7322 using computational fluid dynamics method, International Journal of Scientific Progress and Research, 12(04), 193-198,2015.
  • N. Singh, Analysis of aerodynamic characteristics of various airfoils at sonic speed, International Journal of Engineering Research & Technology, 5(9), 405-411, 2016.
  • R. I. Rubel, M. K. Uddin, M. Z. Islam and M. Rokunuzzaman, Comparison of aerodynamics aharacteristics of NACA 0015 & NACA 4415 aerofoil blade, International Journal of Research- Granthaalayah, 5(11), 187-197, 2017. https://doi.org/10.20944/preprints201610.0095.v1
  • R. I. Pranto and M. I. Inam, Numerical analysis of the aerodynamic characteristics of NACA-4312 airfoil, Journal of Engineering Advancements, 01(02), 29-36, 2020.
  • V. Dhiyyadharshini, R. Krishna and V. Kamaleshwari, Investigation of aerodynamic efficiency on NACA 2412 airfoil, International Journal of Engineering Research & Technology, 10(9), 725-728, 2021.
  • A. Shabur, A. Hasan and M. Ali, Comparison of aerodynamic behaviour between NACA 0018 and NACA 0012 airfoils at low Reynolds Number through CFD analysis, Advancement in Mechanical Engineering and Technology, 3(2), 1-8,2020. https://doi.org/10.5281/zenodo.4003677
  • H. Fatahian, H. Salarian, M. E. Nimvari and J. Khaleghinia, Numerical simulation of the efect of rain on aerodynamic performance and aeroacoustic mechanism of an airfoil via a two phase fow approach, Applied Sciences, 2(5), 867, 2020. https://doi.org/10.1007/s42452-020-2685-4
  • P. Haines and J. Luers, Aerodynamic penalties of heavy rain on landing airplanes, Journal of Aircraft, 20(2), 111-119, 1983. https://doi.org/10.2514/3.44839
  • Y. Cao, Z. Wu and Z. Xu, Effects of rainfall on aircraft aerodynamics, Progress in Aerospace Sciences, 71, 85-217, 2014. https://doi.org/10.1016/j.paerosci.2014.07.003
  • Z. Wu and Y. Cao, Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian–Lagrangian approach, International Journal of Multiphase Flow, 69, 81-92, 2015. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.006
  • D. C. Douvi, E. C. Douvi and D. P. Margaris, Computational study of NACA 0012 airfoil in air-sand particle two-phase flow at Reynolds Number of Re=1.76×106, International Journal of New Technology and Research, 5(4), 101-108, 2019. https://doi.org/10.31871/IJNTR.5.4.18
  • M. Drela, XFOIL: An analysis and design system for low Reynolds Number airfoils, Springer-Verlag, 54, 1-12, 1989. https://doi.org/10.1007/978-3-642-84010-4_1.

Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil

Year 2023, Volume: 12 Issue: 1, 302 - 309, 15.01.2023
https://doi.org/10.28948/ngumuh.1216401

Abstract

The purpose of this paper is to study the effects of turbulence kinetic energy structures formed during flow and particles of different diameters and different flow velocities in the air in different regional areas on aerodynamic performance characteristics in NACA 0012. Single and two phase fluid flows were worked out by using Ansys Fluent Computational Fluid Dynamics (CFD) code. Computational results obtained from Ansys Fluent CFD code for pure air and the air containing sand particles were compared with numerical values gained in the literature for validation. Results obtained from the numerical tests demonstrate good agreement with the value in the literature. These results indicate the turbulence kinetic energy value occurred in the tail region of the airfoil increases with the increase in the angle of attack and shifts towards the upper region of the airfoil at high attack angle. Moreover, the upper region of the airfoil at high attack angle becomes larger at low Reynolds numbers due to viscous effects. The drag and lift coefficients obtained in the numerical tests of the airfoils and in the experimental tests in the wind tunnel will differ from the values in the application area. Because, in the operation of airfoils in different regional environments, there are always particles of various concentrations and diameters in the air. In this case, the drag coefficient increases and the lift coefficient decreases.

References

  • R.L. Fearn, Airfoil aerodynamics using panel methods, The Mathematica Journal, 10(4), 1-17, 2008. https://dx.doi.org/10.3888/tmj.10.4-6.
  • C. E. Douvi, I. A. Tsavalos and P. D. Margaris, Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil, Journal of Mechanical Engineering Research, 4(3), 100-111, 2012. https://doi.org/10.5897/JMER11.074
  • M. Adel, A comparative study for different shapes of airfoils, International Journal of Mechanical Engineering, 4, 27-39, 2019.
  • A. Bodavula, U. Guven and R. Yadav, Numerical analysis of protrusion effect over an airfoil at Reynolds Number 10-5, International Journal of Recent Technology and Engineering, 8(2), 2583-2588, 2019.
  • V. Iliev, M. Lazareviki and V. Aleksoski, Numerical and experimental investigation of airfoil performance in a wind tunnel, American Journal of Engineering Research, 9(4), 119-124, 2020.
  • J. C. M. Lin and L. L. Pauley, Low-Reynolds-number separation on an airfoil, AIAA Journal, 34(8), 1570-1577, 1996. https://doi.org/10.2514/3.13273
  • A. Choudhry, M. Arjomandi and R. Kelso, A study of long separation bubble on thick airfoils and its consequent effects, International Journal of Heat and Fluid Flow, 52, 84-96, 2015. https://doi.org/10.1016/j.ijheatfluidflow.2014.12.001
  • P. Jimenez, P. Lichota, D. Agudelo and K. Rogowski, Experimental validation of total energy control system for UAVs, Energies, 13(14), 1-18, 2020. https://doi.org/10.3390/en13010014
  • K. Rogowski, G. Królak and G. Bangga, Numerical study on the aerodynamic characteristics of the NACA 0018 airfoil at low Reynolds Number for Darrieus wind turbines using the transition SST model, Processes, 9(3), 477, 2021. https://doi.org/10.3390/pr9030477
  • M. Umapathi and N. Soni, Comparative analysis of airfoil NACA 2313 and NACA 7322 using computational fluid dynamics method, International Journal of Scientific Progress and Research, 12(04), 193-198,2015.
  • N. Singh, Analysis of aerodynamic characteristics of various airfoils at sonic speed, International Journal of Engineering Research & Technology, 5(9), 405-411, 2016.
  • R. I. Rubel, M. K. Uddin, M. Z. Islam and M. Rokunuzzaman, Comparison of aerodynamics aharacteristics of NACA 0015 & NACA 4415 aerofoil blade, International Journal of Research- Granthaalayah, 5(11), 187-197, 2017. https://doi.org/10.20944/preprints201610.0095.v1
  • R. I. Pranto and M. I. Inam, Numerical analysis of the aerodynamic characteristics of NACA-4312 airfoil, Journal of Engineering Advancements, 01(02), 29-36, 2020.
  • V. Dhiyyadharshini, R. Krishna and V. Kamaleshwari, Investigation of aerodynamic efficiency on NACA 2412 airfoil, International Journal of Engineering Research & Technology, 10(9), 725-728, 2021.
  • A. Shabur, A. Hasan and M. Ali, Comparison of aerodynamic behaviour between NACA 0018 and NACA 0012 airfoils at low Reynolds Number through CFD analysis, Advancement in Mechanical Engineering and Technology, 3(2), 1-8,2020. https://doi.org/10.5281/zenodo.4003677
  • H. Fatahian, H. Salarian, M. E. Nimvari and J. Khaleghinia, Numerical simulation of the efect of rain on aerodynamic performance and aeroacoustic mechanism of an airfoil via a two phase fow approach, Applied Sciences, 2(5), 867, 2020. https://doi.org/10.1007/s42452-020-2685-4
  • P. Haines and J. Luers, Aerodynamic penalties of heavy rain on landing airplanes, Journal of Aircraft, 20(2), 111-119, 1983. https://doi.org/10.2514/3.44839
  • Y. Cao, Z. Wu and Z. Xu, Effects of rainfall on aircraft aerodynamics, Progress in Aerospace Sciences, 71, 85-217, 2014. https://doi.org/10.1016/j.paerosci.2014.07.003
  • Z. Wu and Y. Cao, Numerical simulation of flow over an airfoil in heavy rain via a two-way coupled Eulerian–Lagrangian approach, International Journal of Multiphase Flow, 69, 81-92, 2015. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.006
  • D. C. Douvi, E. C. Douvi and D. P. Margaris, Computational study of NACA 0012 airfoil in air-sand particle two-phase flow at Reynolds Number of Re=1.76×106, International Journal of New Technology and Research, 5(4), 101-108, 2019. https://doi.org/10.31871/IJNTR.5.4.18
  • M. Drela, XFOIL: An analysis and design system for low Reynolds Number airfoils, Springer-Verlag, 54, 1-12, 1989. https://doi.org/10.1007/978-3-642-84010-4_1.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Fuat Kaya 0000-0002-9701-0920

Publication Date January 15, 2023
Submission Date December 8, 2022
Acceptance Date December 28, 2022
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Kaya, F. (2023). Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 302-309. https://doi.org/10.28948/ngumuh.1216401
AMA Kaya F. Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil. NOHU J. Eng. Sci. January 2023;12(1):302-309. doi:10.28948/ngumuh.1216401
Chicago Kaya, Fuat. “Investigation of Effects of Sand Particles on Aerodynamic Performance of NACA 0012 Airfoil”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 1 (January 2023): 302-9. https://doi.org/10.28948/ngumuh.1216401.
EndNote Kaya F (January 1, 2023) Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 302–309.
IEEE F. Kaya, “Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil”, NOHU J. Eng. Sci., vol. 12, no. 1, pp. 302–309, 2023, doi: 10.28948/ngumuh.1216401.
ISNAD Kaya, Fuat. “Investigation of Effects of Sand Particles on Aerodynamic Performance of NACA 0012 Airfoil”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (January 2023), 302-309. https://doi.org/10.28948/ngumuh.1216401.
JAMA Kaya F. Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil. NOHU J. Eng. Sci. 2023;12:302–309.
MLA Kaya, Fuat. “Investigation of Effects of Sand Particles on Aerodynamic Performance of NACA 0012 Airfoil”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 1, 2023, pp. 302-9, doi:10.28948/ngumuh.1216401.
Vancouver Kaya F. Investigation of effects of sand particles on aerodynamic performance of NACA 0012 airfoil. NOHU J. Eng. Sci. 2023;12(1):302-9.

23135