NACA6412 uçak kanadının aerodinamik parametrelerinin araştırılması
Year 2023,
Volume: 12 Issue: 2, 566 - 580, 15.04.2023
Mustafa Başekin
,
Ramazan Selver
Abstract
NACA kanat profilleri, NACA tarafından geliştirilen uçak kanatları için en çok tercih edilen profillerdendir. Bu çalışmada, kanadın farklı hızlardaki hareketinin yanında, hücum açılarında değişiklikler yapılarak aerodinamik parametreler tespit edilmiştir. Kanat üzerinde oluşan kaldırma kuvveti, sürüklenme kuvveti, kanat üzerine tesir eden toplam kuvvet, kanat kök bölgesinde oluşan moment, gerilim değerleri ve kanat üzerindeki sehim verileri elde edilmiştir. Kritik hücum açısından sonra kanadın tepkisi incelenmiştir. Elde edilen sonuçlara göre, hızın ve hücum açısının artması sonucu kanadın üzerine etkiyen aerodinamik parametrelerde artış görülmüştür. Kritik hücum açısı 16 derece olarak bulunmuştur. Kritik hücum açısının üzerindeki uçuşlarda uçağın kırıma uğrama (stall) ihtimalinin arttığı, yeterli kaldırmanın gerçekleşememesi gibi durumlar ortaya çıkmıştır.
Supporting Institution
Süleyman Demirel Üniversitesi
Thanks
Çalışmada yardımlarını esirgemeyen ve benim mesleki anlamda gelişmem için verdiği değerli tavsiyelerinden dolayı, Dr. Öğr. Üyesi Ramazan SELVER hocama teşekkür ederim.
Çalışma süresince bana verdikleri desteklerden dolayı değerli eşime ve aileme teşekkür ederim.
References
- H. E. Tanürün, İ. Ata, M. E. Canlı ve A. Acır, Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi. Politeknik Dergisi, 23 (2), 371-381, 2020. https://doi.org/10,2339/politeknik.500043.
- YouTube, Tübitak Bilim Genç, Uçuş Mekaniği, https://www.youtube.com/watch?v=6T1OFAt-92A&t=1516s, Erişim: 7 Şubat 2023.
- NACA, National Advisory Committee for Aeronautics, https://en.wikipedia.org/wiki/NACA_airfoil, Erişim: 7 Şubat 2023.
- H. Sogukpınar, Numerical simulation of 4-digit inclined NACA 00XX airfoils to find optimum angle of attack for airplane wing. Uludag University Journal of The Faculty of Engineering, 22(1),169-178, 2017. https://doi.org/10.17482/uumfd.309470.
- G. M. Ozkan, Experimental investigation of the flow characteristics around a NACA 0012 airfoil subjected to stall and post-stall conditions. Cukurova Unıversity Journal of the Faculty of Engineering and Architecture, 35(2), 369-378, 2020. https://doi.org/10.21605/cukurovaummfd.792424
- M. S. Genc, G. Ozısık ve N. Kahraman, Düz flaplı NACA 0012 kanat profilinin aerodinamik performansının incelenmesi. Journal of Thermal Science and Technology, 28(1), 1-8. 2008.
- I. Gov, M. H. Dogru ve Ü. Korkmaz, Uçuş esnasında değiştirilebilir kanat profili kullanarak NACA 4412’nin aerodinamik performansının artırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 1109-1126, 2019. https://doi.org/10.17341/gazimmfd.460536.
- M. Y. Zakaria, M. M. İbrahim, S. Tagab and M. R. Hajj, A computational study of vortex shedding from a NACA 0012 airfoil at high angles of attack, International Journal of Aerodynamics, 6(1), 1-17, 2018. https://doi.org/10.1504/IJAD.2018.089779.
- T. S. Rao, T. Mahapatra and S. C. Mangavelli, Enhancement of lift-drag characteristics of NACA 0012. Materials Today: Proceedings, 5(2), 5328-5337, 2018. https://doi.org/10.1016/j.matpr.2017.12.117.
- E. Fatahian, A. L. Nichkoohi and H. Fatahian, Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over NACA 2415 airfoil. Progress in Computational Fluid Dynamics, 19(3), 170-179.2019. https://doi.org/10.1504/PCFD.2019.099598.
- D. S. Körpe, Ö. Ö. Kanat and T. Oktay, The effects of initial y plus: numerical analysis of 3D NACA 4412 wing using γ-Reθ SST turbulence model. European Journal of Science and Technology, 17, 692-702. 2019. https://doi.org/10.31590/ejosat.631135
- K. Gore, A. Gote, A. Govale, A. Kanawade and S. Humane, Aerodynamic analysis of aircraft wings using CFD. International Research Journal of Engineering an Technology, 5(6), 639-644. 2018.
- I. Bogrekci, P. Demircioglu, H. S. Sucuoglu, E. Guven, N. Demir and M. N. Durakbasa, Structural and modal analyses of NACA 66-206 aircraft wing model. Proceeding of the International Symposium for Production Research, 182-191, 2019. https://doi.org/10.1007/978-3-030-31343-2_16
- N. M. Triet, N. N. Viet and P. M. Thang, Aerodynamic analysis of aircraft wing. VNU Journal of Science: Mathematics-Physics, 31(2), 68-75. 2015.
- S. Guo, Aeroelastic optimization of an aerobatic aircraft wing structure. Aerospace Science and Technology, 11, 396–404, 2007. https://doi.org/10.1016/j.ast.2007.01.003
- A. Szollosi and P. Baranyi, Improved control performance of the 3-Dof aeroelastic wing section: a tip model based 2d parametric control performance optimization. Asian Journal of Control, 19(2), 450–466, 2017. https://doi.org/10.1002/asjc.1418.
- M. M. Yavuz, Flow and mechanical characteristic of a modified NACA wing geometry. Cukurova University Journal of the Faculty of Engineering, 36(3), 815-825, 2021. https://doi.org/10.21605/cukurovaumfd.100580.
- Y. F. Gorgulu, M. A. Ozgur and R. Kose, CFD analysis of a NACA 0009 aerofoil at a low Reynolds number, Journal of Polytechnic, 24(3), 1237-1242, 2021. https://doi.org/10.2339/politeknik.877391.
- Y. H. Ozdemir and T. Cosgun, The influence of turbulence models on the numerical modelling of a 3D wing in ground effect. European Journal of Science and Technology, 43, 86-90, 2022. https://doi.org/10.31590/ejosat.1200056.
- T. Ozturk, O. C. Cınkır, S. Urgun and S. Fidan, 2D investigation of a wing concept with a NACA 4412 airfoil in ground effect operation. Gazi University Journal of Science, 9(3), 548-561, 2021. https://doi.org/10.29109/gujsc.954959
- Y. A. Çengel ve J. M. Cimbala, Akışkanlar Mekaniği Temelleri ve Uygulamaları (3. Baskı). SS. 9-10, Palme Yayıncılık, Ankara, 2020.
- Y. A. Çengel ve J. M. Cimbala, Akışkanlar Mekaniği Temelleri ve Uygulamaları, SS. 615-618, Palme Yayıncılık, Ankara, 2015.
Investigation of aerodynamic parameters of NACA6412 aircraft wing
Year 2023,
Volume: 12 Issue: 2, 566 - 580, 15.04.2023
Mustafa Başekin
,
Ramazan Selver
Abstract
NACA airfoils are one of the most preferred profiles for aircraft wings developed by NACA. In this study, besides the movement of the wing at different speeds, aerodynamic parameters were determined by making changes in the angle of attack. The lift force, drag force, total force acting on the wing, moment formed in the wing root region, stress values and deflection data on the wing were obtained. After the critical attack angle, the response of the wing was examined. According to the results obtained, an increase in the aerodynamic parameters acting on the wing was observed as a result of the increase in speed and angle of attack. The critical angle of attack was found to be 16 degrees. In flights above the critical angle of attack, situations such as the possibility of stalling the aircraft increased and insufficient lift could be achieved.
References
- H. E. Tanürün, İ. Ata, M. E. Canlı ve A. Acır, Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi. Politeknik Dergisi, 23 (2), 371-381, 2020. https://doi.org/10,2339/politeknik.500043.
- YouTube, Tübitak Bilim Genç, Uçuş Mekaniği, https://www.youtube.com/watch?v=6T1OFAt-92A&t=1516s, Erişim: 7 Şubat 2023.
- NACA, National Advisory Committee for Aeronautics, https://en.wikipedia.org/wiki/NACA_airfoil, Erişim: 7 Şubat 2023.
- H. Sogukpınar, Numerical simulation of 4-digit inclined NACA 00XX airfoils to find optimum angle of attack for airplane wing. Uludag University Journal of The Faculty of Engineering, 22(1),169-178, 2017. https://doi.org/10.17482/uumfd.309470.
- G. M. Ozkan, Experimental investigation of the flow characteristics around a NACA 0012 airfoil subjected to stall and post-stall conditions. Cukurova Unıversity Journal of the Faculty of Engineering and Architecture, 35(2), 369-378, 2020. https://doi.org/10.21605/cukurovaummfd.792424
- M. S. Genc, G. Ozısık ve N. Kahraman, Düz flaplı NACA 0012 kanat profilinin aerodinamik performansının incelenmesi. Journal of Thermal Science and Technology, 28(1), 1-8. 2008.
- I. Gov, M. H. Dogru ve Ü. Korkmaz, Uçuş esnasında değiştirilebilir kanat profili kullanarak NACA 4412’nin aerodinamik performansının artırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 1109-1126, 2019. https://doi.org/10.17341/gazimmfd.460536.
- M. Y. Zakaria, M. M. İbrahim, S. Tagab and M. R. Hajj, A computational study of vortex shedding from a NACA 0012 airfoil at high angles of attack, International Journal of Aerodynamics, 6(1), 1-17, 2018. https://doi.org/10.1504/IJAD.2018.089779.
- T. S. Rao, T. Mahapatra and S. C. Mangavelli, Enhancement of lift-drag characteristics of NACA 0012. Materials Today: Proceedings, 5(2), 5328-5337, 2018. https://doi.org/10.1016/j.matpr.2017.12.117.
- E. Fatahian, A. L. Nichkoohi and H. Fatahian, Numerical study of the effect of suction at a compressible and high Reynolds number flow to control the flow separation over NACA 2415 airfoil. Progress in Computational Fluid Dynamics, 19(3), 170-179.2019. https://doi.org/10.1504/PCFD.2019.099598.
- D. S. Körpe, Ö. Ö. Kanat and T. Oktay, The effects of initial y plus: numerical analysis of 3D NACA 4412 wing using γ-Reθ SST turbulence model. European Journal of Science and Technology, 17, 692-702. 2019. https://doi.org/10.31590/ejosat.631135
- K. Gore, A. Gote, A. Govale, A. Kanawade and S. Humane, Aerodynamic analysis of aircraft wings using CFD. International Research Journal of Engineering an Technology, 5(6), 639-644. 2018.
- I. Bogrekci, P. Demircioglu, H. S. Sucuoglu, E. Guven, N. Demir and M. N. Durakbasa, Structural and modal analyses of NACA 66-206 aircraft wing model. Proceeding of the International Symposium for Production Research, 182-191, 2019. https://doi.org/10.1007/978-3-030-31343-2_16
- N. M. Triet, N. N. Viet and P. M. Thang, Aerodynamic analysis of aircraft wing. VNU Journal of Science: Mathematics-Physics, 31(2), 68-75. 2015.
- S. Guo, Aeroelastic optimization of an aerobatic aircraft wing structure. Aerospace Science and Technology, 11, 396–404, 2007. https://doi.org/10.1016/j.ast.2007.01.003
- A. Szollosi and P. Baranyi, Improved control performance of the 3-Dof aeroelastic wing section: a tip model based 2d parametric control performance optimization. Asian Journal of Control, 19(2), 450–466, 2017. https://doi.org/10.1002/asjc.1418.
- M. M. Yavuz, Flow and mechanical characteristic of a modified NACA wing geometry. Cukurova University Journal of the Faculty of Engineering, 36(3), 815-825, 2021. https://doi.org/10.21605/cukurovaumfd.100580.
- Y. F. Gorgulu, M. A. Ozgur and R. Kose, CFD analysis of a NACA 0009 aerofoil at a low Reynolds number, Journal of Polytechnic, 24(3), 1237-1242, 2021. https://doi.org/10.2339/politeknik.877391.
- Y. H. Ozdemir and T. Cosgun, The influence of turbulence models on the numerical modelling of a 3D wing in ground effect. European Journal of Science and Technology, 43, 86-90, 2022. https://doi.org/10.31590/ejosat.1200056.
- T. Ozturk, O. C. Cınkır, S. Urgun and S. Fidan, 2D investigation of a wing concept with a NACA 4412 airfoil in ground effect operation. Gazi University Journal of Science, 9(3), 548-561, 2021. https://doi.org/10.29109/gujsc.954959
- Y. A. Çengel ve J. M. Cimbala, Akışkanlar Mekaniği Temelleri ve Uygulamaları (3. Baskı). SS. 9-10, Palme Yayıncılık, Ankara, 2020.
- Y. A. Çengel ve J. M. Cimbala, Akışkanlar Mekaniği Temelleri ve Uygulamaları, SS. 615-618, Palme Yayıncılık, Ankara, 2015.