Research Article
BibTex RIS Cite

Numerical investigation of aerodynamic of a car with various vortex generators

Year 2023, Volume: 12 Issue: 2, 581 - 587, 15.04.2023
https://doi.org/10.28948/ngumuh.1232871

Abstract

In this study, the aerodynamic characteristics of a 1:5 scale passenger car with trapezoidal and curved wing vortex generators was investigated numerically. The vehicle design was made with the CATIA V5R21 and the ANSYS was used for the geometric, numerical solution and meshing. The air velocity was kept constant at 100 km/h and the solution of the flow field was completed with the realizable k-ɛ turbulence model. Eight vortex generators at 100 mm intervals were placed 15 mm ahead of the flow separation point formed at the back of the vehicle roof. The flow structure of the vehicle with vortex generators was examined with velocity distributions, pressure distributions and aerodynamic coefficients, and compared with the results without the vortex generator. The results showed that the flow field and aerodynamic characteristics behind the vehicle were affected by the presence and structure of vortex generators. The use of the curved wing vortex generator caused a 2.87% reduction in the drag coefficient, while this rate was determined as 2.20%, in the model using trapezoidal wing vortex generator. The maximum increase in the lift coefficient was found in the model with the trapezoidal wing vortex generator of 3.3%.

References

  • C. H. Bruneau, E. Creusé, P. Gilliéron and I. Mortazavi, Effect of the vortex dynamics on the drag coefficient of a square back Ahmed body: Application to the flow control. European Journal of Mechanics, B/Fluids, 45, 1–11, 2014. https://doi.org/10.1016/j.euromechflu. 2013.11.003.
  • H. Lienhart and S. Becker, Flow and turbulence structure in the wake of a simplified car model. Journal of Passenger Car: Mechanical Systems Journal, 112, 785-796, 2013. https://about.jstor.org/terms.
  • F. Hesse and A. S. Morgans, Simulation of wake bimodality behind squareback bluff-bodies using LES. Computers and Fluids, 223. 2021. https://doi.org/10.1016/j.compfluid.2021.104901.
  • G. Sivaraj, K. Parammasivam, M. Prasath, P. Vadivelu and D. Lakshmanan, Flow analysis of rear end body shape of the vehicle for better aerodynamic performance. Materials Today: Proceedings, 47, 2175-2181, 2021. https://doi.org/10.1016/j.matpr.2021. 05.521.
  • H. Ebrahim and R. Dominy, Wake and surface pressure analysis of vehicles in platoon. Journal of Wind Engineering and Industrial Aerodynamics, 201, 2020. https://doi.org/10.1016/j.jweia.2020.104144.
  • M. Palanivendhan, J. Chandradass, P. K. Bannaravuri, J. Philip and K. Shubham, Aerodynamic simulation of optimized vortex generators and rear spoiler for performance vehicles. Materials Today: Proceedings, 45, 7228–7238. 2021. https://doi.org/10.1016/ j.matpr.2021.02.537.
  • J. F. Beaudoin and J. L. Aider, Drag and lift reduction of a 3D bluff body using flaps. Experiments in Fluids, 44, 491–501, 2008. https://doi.org/10.1007/s00348-007-0392-1.
  • S. Selvi Rajan, P. Harikrishna, S. Senthilkumar and K. M. Parammasivam. Aerodynamic drag reduction on a sedan car by provision of vortex generators through wind tunnel studies. Conference: National Conference on wind tunnel testing, pp. 1-7, Thiruvanathapuram, 2013.
  • G. Subbiah, A. S. Allaudeen, H. Janarthanam, P. Mani, S. Gnanamani, K. S. S. Raja and T. A. Raja, Computational investigation and design optimization of vortex generator for a sport utility vehicle using CFD. AIP Conference Proceedings, 2311, Fame, 2020.
  • A. Huminic and G. Huminic, G., Aerodynamics of curved underbody diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 205, 2020. https://doi.org/10.1016/j.jweia.2020.104300.
  • J.-L. Aider, J.-F. Beaudoin, J. Eduardo Wesfreid and J. Eduardo. Drag and lift reduction of a 3D bluff-body using active vortex generators. Experiments in Fluids, 5, 771–789, 2010. Doi:10.1007/S00348-009-0770-Y
  • R. P. Verma, N. Kumar Chaudhary and S. Avikal, Effect of direction of lip spoiler on the aerodynamic performance of a small passenger vehicle. Materials Today: Proceedings, 46, 10301-10305, 2021. https://doi.org/10.1016/j.matpr.2020.12.448
  • F. F. Buscariolo, G. R. S. Assi and S. J. Sherwin, Computational study on an Ahmed Body equipped with simplified underbody diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 209, 2021. https://doi.org/10.1016/j.jweia.2020.104411
  • M. Koike, T. Nagayoshi and N. Hamamoto, Research on aerodynamic drag reduction by vortex generators, Mitsubishi Motors Technical Review, No: 16 N., 2004.
  • P. Gilliéron and A. Kourta, Aerodynamic drag reduction by vertical splitter plates. Experiments in Fluids, 48(1), 1–16, 2010. https://doi.org/ 10.1007/s00348-009-0705-7
  • S. Arabacı, Canlılardan esinlenerek kara taşıtlarının aerodinamik tasarımlarının iyileştirilmesi. Doktora Tezi, Celal Bayar Üniversitesi, Türkiye, 2016.

Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi

Year 2023, Volume: 12 Issue: 2, 581 - 587, 15.04.2023
https://doi.org/10.28948/ngumuh.1232871

Abstract

Bu çalışmada 1:5 ölçekli yamuk ve kavisli kanat girdap üreteçlere sahip binek bir aracın aerodinamik özellikleri nümerik olarak araştırılmıştır. Araç tasarımı CATİA V5R21 ile yapılırken, geometrik düzenlemeler, sayısal çözüm işlemleri ve ağ örme için ANSYS programı kullanılmıştır. Hava hızı 100 km/h olarak sabit tutulmuş ve akış alanının çözümü realizable k-ε türbülans modeli ile yapılmıştır. 8 adet girdap, basınç dağılımları ve aerodinamik katsayılar incelenerek, girdap üreteci kullanılmamış durumdaki sonuçlarla karşılaştırılmıştır. Sonuçlar aracın arka kısmındaki akış alanının ve aerodinamik karakteristiklerin girdap üreteçlerin varlığından ve yapısından etkilendiğini göstermiştir. Kavisli kanat girdap üretecin kullanılması sürüklenme katsayısında %2.87 oranında bir azalmaya sebep olurken, yamuk kanat girdap üretecinin kullanılması durumunda bu oran %2.20 olarak tespit edilmiştir. Kaldırma katsayısındaki maksimum artış %3.3 olarak yamuk kanat girdap üreteç kullanılması ile elde edilmiştir.

References

  • C. H. Bruneau, E. Creusé, P. Gilliéron and I. Mortazavi, Effect of the vortex dynamics on the drag coefficient of a square back Ahmed body: Application to the flow control. European Journal of Mechanics, B/Fluids, 45, 1–11, 2014. https://doi.org/10.1016/j.euromechflu. 2013.11.003.
  • H. Lienhart and S. Becker, Flow and turbulence structure in the wake of a simplified car model. Journal of Passenger Car: Mechanical Systems Journal, 112, 785-796, 2013. https://about.jstor.org/terms.
  • F. Hesse and A. S. Morgans, Simulation of wake bimodality behind squareback bluff-bodies using LES. Computers and Fluids, 223. 2021. https://doi.org/10.1016/j.compfluid.2021.104901.
  • G. Sivaraj, K. Parammasivam, M. Prasath, P. Vadivelu and D. Lakshmanan, Flow analysis of rear end body shape of the vehicle for better aerodynamic performance. Materials Today: Proceedings, 47, 2175-2181, 2021. https://doi.org/10.1016/j.matpr.2021. 05.521.
  • H. Ebrahim and R. Dominy, Wake and surface pressure analysis of vehicles in platoon. Journal of Wind Engineering and Industrial Aerodynamics, 201, 2020. https://doi.org/10.1016/j.jweia.2020.104144.
  • M. Palanivendhan, J. Chandradass, P. K. Bannaravuri, J. Philip and K. Shubham, Aerodynamic simulation of optimized vortex generators and rear spoiler for performance vehicles. Materials Today: Proceedings, 45, 7228–7238. 2021. https://doi.org/10.1016/ j.matpr.2021.02.537.
  • J. F. Beaudoin and J. L. Aider, Drag and lift reduction of a 3D bluff body using flaps. Experiments in Fluids, 44, 491–501, 2008. https://doi.org/10.1007/s00348-007-0392-1.
  • S. Selvi Rajan, P. Harikrishna, S. Senthilkumar and K. M. Parammasivam. Aerodynamic drag reduction on a sedan car by provision of vortex generators through wind tunnel studies. Conference: National Conference on wind tunnel testing, pp. 1-7, Thiruvanathapuram, 2013.
  • G. Subbiah, A. S. Allaudeen, H. Janarthanam, P. Mani, S. Gnanamani, K. S. S. Raja and T. A. Raja, Computational investigation and design optimization of vortex generator for a sport utility vehicle using CFD. AIP Conference Proceedings, 2311, Fame, 2020.
  • A. Huminic and G. Huminic, G., Aerodynamics of curved underbody diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 205, 2020. https://doi.org/10.1016/j.jweia.2020.104300.
  • J.-L. Aider, J.-F. Beaudoin, J. Eduardo Wesfreid and J. Eduardo. Drag and lift reduction of a 3D bluff-body using active vortex generators. Experiments in Fluids, 5, 771–789, 2010. Doi:10.1007/S00348-009-0770-Y
  • R. P. Verma, N. Kumar Chaudhary and S. Avikal, Effect of direction of lip spoiler on the aerodynamic performance of a small passenger vehicle. Materials Today: Proceedings, 46, 10301-10305, 2021. https://doi.org/10.1016/j.matpr.2020.12.448
  • F. F. Buscariolo, G. R. S. Assi and S. J. Sherwin, Computational study on an Ahmed Body equipped with simplified underbody diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 209, 2021. https://doi.org/10.1016/j.jweia.2020.104411
  • M. Koike, T. Nagayoshi and N. Hamamoto, Research on aerodynamic drag reduction by vortex generators, Mitsubishi Motors Technical Review, No: 16 N., 2004.
  • P. Gilliéron and A. Kourta, Aerodynamic drag reduction by vertical splitter plates. Experiments in Fluids, 48(1), 1–16, 2010. https://doi.org/ 10.1007/s00348-009-0705-7
  • S. Arabacı, Canlılardan esinlenerek kara taşıtlarının aerodinamik tasarımlarının iyileştirilmesi. Doktora Tezi, Celal Bayar Üniversitesi, Türkiye, 2016.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Onur Yemenici 0000-0003-0011-8343

Halit Kasap This is me 0000-0002-4523-3006

Publication Date April 15, 2023
Submission Date January 12, 2023
Acceptance Date March 23, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Yemenici, O., & Kasap, H. (2023). Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 581-587. https://doi.org/10.28948/ngumuh.1232871
AMA Yemenici O, Kasap H. Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi. NOHU J. Eng. Sci. April 2023;12(2):581-587. doi:10.28948/ngumuh.1232871
Chicago Yemenici, Onur, and Halit Kasap. “Farklı Girdap üreteçlere Sahip Bir aracın aerodinamiğinin sayısal Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 2 (April 2023): 581-87. https://doi.org/10.28948/ngumuh.1232871.
EndNote Yemenici O, Kasap H (April 1, 2023) Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 581–587.
IEEE O. Yemenici and H. Kasap, “Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi”, NOHU J. Eng. Sci., vol. 12, no. 2, pp. 581–587, 2023, doi: 10.28948/ngumuh.1232871.
ISNAD Yemenici, Onur - Kasap, Halit. “Farklı Girdap üreteçlere Sahip Bir aracın aerodinamiğinin sayısal Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (April 2023), 581-587. https://doi.org/10.28948/ngumuh.1232871.
JAMA Yemenici O, Kasap H. Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi. NOHU J. Eng. Sci. 2023;12:581–587.
MLA Yemenici, Onur and Halit Kasap. “Farklı Girdap üreteçlere Sahip Bir aracın aerodinamiğinin sayısal Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 2, 2023, pp. 581-7, doi:10.28948/ngumuh.1232871.
Vancouver Yemenici O, Kasap H. Farklı girdap üreteçlere sahip bir aracın aerodinamiğinin sayısal incelenmesi. NOHU J. Eng. Sci. 2023;12(2):581-7.

23135