Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapay sinir ağına dayalı bir FV güç santralinin arızaların iyileştirilmesi yoluyla analizi

Yıl 2023, Cilt: 12 Sayı: 2, 360 - 366, 15.04.2023
https://doi.org/10.28948/ngumuh.1252244

Öz

Hem yenilenebilir enerji kaynaklardan bir şebeke gerilimi elde etme hem de yüksek elektrik faturalarını azaltma ihtiyacından kaynaklanan endüstriyel alanlarda yenilenebilir enerji kaynaklarının giderek daha fazla benimsenmesi bu sistemlerin güç kalitesini iyileştirebilecek çözümlere olan talebin artmasına neden olmaktadır. Fotovoltaik enerji santralinin (FVES) güç kalitesinin arttırılması için dc-kıyıcı devre koruma sistemine dayalı bir fotovoltaik enerji santrali önerilmiştir. DC-kıyıcı devre koruma sisteminin temel amacı, FV panelleri şebeke arızaları sırasında oluşan yüksek dc voltajın zararlı etkilerinden korumaktır. Uyarlanabilir sinir ağı kontrol sistemi, hem T tipi eviricinin denetim sistemine hem de dc-kıyıcı devre koruma sistemine uygulanmıştır. Önerilen koruma sistemi, şebeke arızası sırasında benzetim sonuçlarıyla geçerliliğini doğrulamak için 250 kW' lık bir FVES ile uygulanmıştır. Bu yaklaşım potansiyel olarak FVES’ in güvenilirliğini ve istikrarını artırabilir ve FVES’ in şebekeye bağlantısında katkıda bulunabilir.

Kaynakça

  • I. Isakov and I. Todorovic, Power production strategies for two-stage PV systems during grid faults, Solar Energy, 221, 30-45, 2021 https://doi.org/10.1016/j.so lener.2021.03.085.
  • C. Wang, C. Mishra and V. A. Centeno, A Scalable Method of Adaptive LVRT Settings Adjustment for Voltage Security Enhancement in Power Systems With High Renewable Penetration, in IEEE Transactions on Sustainable Energy, 13(1), 440-451, 2022, https://doi .org/10.1109/TSTE.2021.3116102.
  • H. Mei, C. Jia, J. Fu and X. Luan, Low voltage ride through control strategy for MMC photovoltaic system based on model predictive control, International Journal of Electrical Power & Energy Systems, 125, 106530, 2021, https://doi.org/10.1016/j.ijepes.2020.10 6530.
  • M. Talha, S.R.S. Raihan and N A. Rahim, PV inverter with decoupled active and reactive power control to mitigate grid faults, Renewable Energy, 162, 877-892, 2020, https://doi.org/10.1016/j.renene.2020.08.067.
  • I. R. S. Priyamvada and S. Das, Adaptive Tuning of PV Generator Control to Improve Stability Constrained Power Transfer Capability Limit, in IEEE Transactions on Power Systems, 37 (3), 1770-1781, 2022, https://doi: 10.1109/TPWRS.2021.3114704
  • H. M. Hasanien, An Adaptive Control Strategy for Low Voltage Ride Through Capability Enhancement of Grid-Connected Photovoltaic Power Plants, in IEEE Transactions on Power Systems, 31(4), 3230-3237, 2016. https://doi: 10.1109/TPWRS.2015.2466618.
  • J. P. Roselyn, C. P. Chandran, C. Nithya, D. Devaraj, R. Venkatesan, V. Gopal and S. Madhura, Design and implementation of fuzzy logic based modified real-reactive power control of inverter for low voltage ride through enhancement in grid connected solar PV system, Control Engineering Practice, 101, 104494, 2020, https://doi.org/10.1016/j.conengprac.2020.1044 94.
  • A. Mojallal and S. Lotfifard, Enhancement of Grid Connected PV Arrays Fault Ride Through and Post Fault Recovery Performance, in IEEE Transactions on Smart Grid, 10(1), 546-555, 2019, https://doi:10.1109 /TSG.2017.2748023.
  • E. Z. Bighash, S. M. Sadeghzadeh, E. Ebrahimzadeh and F. Blaabjerg, Improving performance of LVRT capability in single-phase grid-tied PV inverters by a model-predictive controller, International Journal of Electrical Power & Energy Systems, 98, 176-188, 2018, https://doi.org/10.1016/j.ijepes.2017.11.034.
  • M. J. Morshed and A. Fekih, A Novel Fault Ride Through Scheme for Hybrid Wind/PV Power Generation Systems, in IEEE Transactions on Sustainable Energy, 11(4), 2427-2436, 2020, https://doi:10.1109/TSTE.2019.2958918.
  • R. Aljarrah, H. Marzooghi, J. Yu and V. Terzija, Sensitivity analysis of transient short circuit current response to the penetration level of non-synchronous generation, International Journal of Electrical Power & Energy Systems, 125, 106556, 2021, https://doi.org/10 .1016/j.ijepes.2020.106556.
  • A. Al-Shetwi, M. Z. Sujod and F. Blaabjerg, Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant, Solar Energy, 159, 665-681, 2018, https://doi .org/10.1016/j.solener.2017.11.027.
  • A. M.A. Haidar and N. Julai, An improved scheme for enhancing the ride-through capability of grid-connected photovoltaic systems towards meeting the recent grid codes requirements , Energy for Sustainable Development, 50, 38-49, 2019, https://doi.org/10.1016 /j.esd.2019.02.007.
  • R. Kumar, S. Diwania, R. Singh, H. Ashfaq, P. Khetrapal and S. Singh, An intelligent Hybrid Wind–PV farm as a static compensator for overall stability and control of multimachine power system, ISA Transactions, 123, 286-302, 2022, https://doi.org/10.1 016/j.isatra.2021.05.014.
  • S. Kumari, M. D. Mahapatra and S. Pati, Voltage Profile Enhancement in a PV Connected Hybrid Power System using Dynamic Voltage Restorer, 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), 236-240, India, 17-19 August 2022, https://doi:10.1109/ ICESC54411.2022.9885632
  • J. Rodrigues, C. Moreira and J. P. Lopes, Fault-ride-through strategies for grid-tied and grid-forming smart-transformers suited for islanding and interconnected operation, Electric Power Systems Research, 189, 106616, 2020, https://doi.org/10.1016/j.epsr.2020.106 616.
  • R. B. Roy et al., A Comparative Performance Analysis of ANN Algorithms for MPPT Energy Harvesting in Solar PV System, in IEEE Access, 9, pp. 102137-102152, 2021, https://doi:10.1109/ACCESS.2021.309 6864.
  • M. K. Mishu, M. Rokonuzzaman, J. Pasupuleti, M. Shakeri, K. S. Rahman, S. Binzaid, S. K. Tiong and N. Amin, An adaptive TE-PV hybrid energy harvesting system for self-powered IoT sensor applications, Sensors, 21 (8), 2604, 2021, https://doi:10.3390/s210 82604.
  • A. Gencer, Comparison of T-Type Converter and NPC for the Wind Turbine Based on Doubly-Fed Induction Generator . Balkan Journal of Electrical and Computer Engineering, 9 (2), 123-128, 2021. .https://doi:10.176 94/bajece.826624
  • A. Gencer, Analysis and Control of Fault Ride Through Capability Improvement PMSG Based on WECS Using Active Crowbar System During Different Fault Conditions. Elektronika Ir Elektrotechnika, 24 (2), 63-69, 2018. .https https://doi.org/10.5755/j01.eie.24.2.20 637

Analysis of fault ride through the improvement of PV power plant based on artificial neural network

Yıl 2023, Cilt: 12 Sayı: 2, 360 - 366, 15.04.2023
https://doi.org/10.28948/ngumuh.1252244

Öz

The increasing adoption of renewable energy sources in industrial areas, driven by the need to both obtain a grid voltage from renewable energy sources and reduce high electricity bills, has led to an increased demand for solutions that can improve the power quality of these systems. A photovoltaic power plant (PVPP) based on a dc-chopper circuit protection system is proposed for the enhancement of the power quality of PVPP. The aim of the presented protection method is to protect the panels in the PVPP from the harmful effects of the high dc voltage that occurs during grid faults. The adaptive neural network control system is applied in both the T-type inverter and the dc-chopper circuit protection system. The proposed protection system is implemented with a 250 kW PVPP to verify its validity with simulation results during grid fault. This approach can potentially improve the reliability and stability of PVPP, and contribute to the maintain of PVPP into the grid.

Kaynakça

  • I. Isakov and I. Todorovic, Power production strategies for two-stage PV systems during grid faults, Solar Energy, 221, 30-45, 2021 https://doi.org/10.1016/j.so lener.2021.03.085.
  • C. Wang, C. Mishra and V. A. Centeno, A Scalable Method of Adaptive LVRT Settings Adjustment for Voltage Security Enhancement in Power Systems With High Renewable Penetration, in IEEE Transactions on Sustainable Energy, 13(1), 440-451, 2022, https://doi .org/10.1109/TSTE.2021.3116102.
  • H. Mei, C. Jia, J. Fu and X. Luan, Low voltage ride through control strategy for MMC photovoltaic system based on model predictive control, International Journal of Electrical Power & Energy Systems, 125, 106530, 2021, https://doi.org/10.1016/j.ijepes.2020.10 6530.
  • M. Talha, S.R.S. Raihan and N A. Rahim, PV inverter with decoupled active and reactive power control to mitigate grid faults, Renewable Energy, 162, 877-892, 2020, https://doi.org/10.1016/j.renene.2020.08.067.
  • I. R. S. Priyamvada and S. Das, Adaptive Tuning of PV Generator Control to Improve Stability Constrained Power Transfer Capability Limit, in IEEE Transactions on Power Systems, 37 (3), 1770-1781, 2022, https://doi: 10.1109/TPWRS.2021.3114704
  • H. M. Hasanien, An Adaptive Control Strategy for Low Voltage Ride Through Capability Enhancement of Grid-Connected Photovoltaic Power Plants, in IEEE Transactions on Power Systems, 31(4), 3230-3237, 2016. https://doi: 10.1109/TPWRS.2015.2466618.
  • J. P. Roselyn, C. P. Chandran, C. Nithya, D. Devaraj, R. Venkatesan, V. Gopal and S. Madhura, Design and implementation of fuzzy logic based modified real-reactive power control of inverter for low voltage ride through enhancement in grid connected solar PV system, Control Engineering Practice, 101, 104494, 2020, https://doi.org/10.1016/j.conengprac.2020.1044 94.
  • A. Mojallal and S. Lotfifard, Enhancement of Grid Connected PV Arrays Fault Ride Through and Post Fault Recovery Performance, in IEEE Transactions on Smart Grid, 10(1), 546-555, 2019, https://doi:10.1109 /TSG.2017.2748023.
  • E. Z. Bighash, S. M. Sadeghzadeh, E. Ebrahimzadeh and F. Blaabjerg, Improving performance of LVRT capability in single-phase grid-tied PV inverters by a model-predictive controller, International Journal of Electrical Power & Energy Systems, 98, 176-188, 2018, https://doi.org/10.1016/j.ijepes.2017.11.034.
  • M. J. Morshed and A. Fekih, A Novel Fault Ride Through Scheme for Hybrid Wind/PV Power Generation Systems, in IEEE Transactions on Sustainable Energy, 11(4), 2427-2436, 2020, https://doi:10.1109/TSTE.2019.2958918.
  • R. Aljarrah, H. Marzooghi, J. Yu and V. Terzija, Sensitivity analysis of transient short circuit current response to the penetration level of non-synchronous generation, International Journal of Electrical Power & Energy Systems, 125, 106556, 2021, https://doi.org/10 .1016/j.ijepes.2020.106556.
  • A. Al-Shetwi, M. Z. Sujod and F. Blaabjerg, Low voltage ride-through capability control for single-stage inverter-based grid-connected photovoltaic power plant, Solar Energy, 159, 665-681, 2018, https://doi .org/10.1016/j.solener.2017.11.027.
  • A. M.A. Haidar and N. Julai, An improved scheme for enhancing the ride-through capability of grid-connected photovoltaic systems towards meeting the recent grid codes requirements , Energy for Sustainable Development, 50, 38-49, 2019, https://doi.org/10.1016 /j.esd.2019.02.007.
  • R. Kumar, S. Diwania, R. Singh, H. Ashfaq, P. Khetrapal and S. Singh, An intelligent Hybrid Wind–PV farm as a static compensator for overall stability and control of multimachine power system, ISA Transactions, 123, 286-302, 2022, https://doi.org/10.1 016/j.isatra.2021.05.014.
  • S. Kumari, M. D. Mahapatra and S. Pati, Voltage Profile Enhancement in a PV Connected Hybrid Power System using Dynamic Voltage Restorer, 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC), 236-240, India, 17-19 August 2022, https://doi:10.1109/ ICESC54411.2022.9885632
  • J. Rodrigues, C. Moreira and J. P. Lopes, Fault-ride-through strategies for grid-tied and grid-forming smart-transformers suited for islanding and interconnected operation, Electric Power Systems Research, 189, 106616, 2020, https://doi.org/10.1016/j.epsr.2020.106 616.
  • R. B. Roy et al., A Comparative Performance Analysis of ANN Algorithms for MPPT Energy Harvesting in Solar PV System, in IEEE Access, 9, pp. 102137-102152, 2021, https://doi:10.1109/ACCESS.2021.309 6864.
  • M. K. Mishu, M. Rokonuzzaman, J. Pasupuleti, M. Shakeri, K. S. Rahman, S. Binzaid, S. K. Tiong and N. Amin, An adaptive TE-PV hybrid energy harvesting system for self-powered IoT sensor applications, Sensors, 21 (8), 2604, 2021, https://doi:10.3390/s210 82604.
  • A. Gencer, Comparison of T-Type Converter and NPC for the Wind Turbine Based on Doubly-Fed Induction Generator . Balkan Journal of Electrical and Computer Engineering, 9 (2), 123-128, 2021. .https://doi:10.176 94/bajece.826624
  • A. Gencer, Analysis and Control of Fault Ride Through Capability Improvement PMSG Based on WECS Using Active Crowbar System During Different Fault Conditions. Elektronika Ir Elektrotechnika, 24 (2), 63-69, 2018. .https https://doi.org/10.5755/j01.eie.24.2.20 637
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Elektrik Elektronik Mühendisliği
Yazarlar

Altan Gencer 0000-0002-5592-4070

Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 17 Şubat 2023
Kabul Tarihi 13 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Gencer, A. (2023). Analysis of fault ride through the improvement of PV power plant based on artificial neural network. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 360-366. https://doi.org/10.28948/ngumuh.1252244
AMA Gencer A. Analysis of fault ride through the improvement of PV power plant based on artificial neural network. NÖHÜ Müh. Bilim. Derg. Nisan 2023;12(2):360-366. doi:10.28948/ngumuh.1252244
Chicago Gencer, Altan. “Analysis of Fault Ride through the Improvement of PV Power Plant Based on Artificial Neural Network”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, sy. 2 (Nisan 2023): 360-66. https://doi.org/10.28948/ngumuh.1252244.
EndNote Gencer A (01 Nisan 2023) Analysis of fault ride through the improvement of PV power plant based on artificial neural network. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 2 360–366.
IEEE A. Gencer, “Analysis of fault ride through the improvement of PV power plant based on artificial neural network”, NÖHÜ Müh. Bilim. Derg., c. 12, sy. 2, ss. 360–366, 2023, doi: 10.28948/ngumuh.1252244.
ISNAD Gencer, Altan. “Analysis of Fault Ride through the Improvement of PV Power Plant Based on Artificial Neural Network”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/2 (Nisan 2023), 360-366. https://doi.org/10.28948/ngumuh.1252244.
JAMA Gencer A. Analysis of fault ride through the improvement of PV power plant based on artificial neural network. NÖHÜ Müh. Bilim. Derg. 2023;12:360–366.
MLA Gencer, Altan. “Analysis of Fault Ride through the Improvement of PV Power Plant Based on Artificial Neural Network”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, c. 12, sy. 2, 2023, ss. 360-6, doi:10.28948/ngumuh.1252244.
Vancouver Gencer A. Analysis of fault ride through the improvement of PV power plant based on artificial neural network. NÖHÜ Müh. Bilim. Derg. 2023;12(2):360-6.

download