Research Article
BibTex RIS Cite

Environmental stress cracking behavior of polycarbonate materials produced by injection molding method

Year 2023, Volume: 12 Issue: 3, 983 - 989, 15.07.2023
https://doi.org/10.28948/ngumuh.1221428

Abstract

In this study, Environmental Stress Cracking (ESC) behavior of samples produced from two different Polycarbonate and one Polycarbonate/Acrylonitrile Butadiene Styrene mixture resins were analyzed. Experimental samples were produced from Lexan EXL9330, Lexan EXL5689 and CYCOLOY Cx 7240-701 resins by plastic injection molding method. Mechanical tests such as tensile test and environmental stress cracking test were applied to examine the ESC behavior of the produced samples. Fourier Transform Infrared Spectroscopy (FTIR) and Surface Tension / Contact Angle measurement were used as analysis and measurement methods. In ESC tests, distilled water, Polyethylene Glycol 400 (PEG400) and pure glycerin were used as liquids. As a result, it was observed that the samples were damaged very quickly in the PEG400 medium. The damage mechanism was evaluated as ESC, and FTIR results showed that there was no chemical degragation effect in damage formation. It has been evaluated that the resulting damage shows brittle fracture behavior, the ductility of the material and the hydrophilicity of the surface are factors in the damage.

References

  • L. Mascia, Polymers in industry from A to Z: A concise encyclopedia. John Wiley & Sons, 2012.
  • M. Gilbert (ed.), Brydson's plastics materials. William Andrew, 2016.
  • S. Ramakrishna, J. Mayer, E. Wintermantel and K. W. Leong, Biomedical applications of polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224, 2001. https://doi.org/10.1016/S0266-3538(00)00241-4
  • A. K. Bhalla, Environmental Stress Cracking of Interior Polymers used in the car. MS thesis. NTNU, 2018.
  • D. Kyriacos, Polycarbonates. Brydson's Plastics Materials. Butterworth-Heinemann, 457-485, 2017.
  • P. Mitschang and K. Hildebrandt, Polymer and composite moulding technologies for automotive applications. Advanced materials in automotive engineering. Woodhead Publishing, 210-229, 2012. https://doi.org/10.1533/9780857095466.210
  • M. M. Ferreira and V.D.F.C Lins, Failure in automobile headlight lenses. Engineering Failure Analysis, 104, 844-855,2019. https://doi.org/10.1016/j.engfailanal.2019.06.051
  • P.R. Lewis, Environmental stress cracking of polycarbonate catheter connectors. Engineering Failure Analysis, 16.6:1816-1824, 2009, https://doi.org/10.1016/j.engfailanal.2008.08.026
  • A. Kausar, A review of filled and pristine polycarbonate blends and their applications. Journal of Plastic Film & Sheeting, 34.1: 60-97, 2018. https://doi.org/10.1177/8756087917691088
  • L. Andena, M. Rink, C. Marano, F. Briatico-Vangosa and L. Castellani, Effect of processing on the environmental stress cracking resistance of high-impact polystyrene. Polymer Testing, 54: 40-47, 2016. https://doi.org/10.1016/j.polymertesting.2016.06.017
  • M. L. Robeson, Environmental stress cracking: A review. Polymer Engineering & Science, 53.3: 453-467, 2013. https://doi.org/10.1002/pen.23284
  • S. Koch, M. Meunier, C. Hopmann and D. Alperstein, A combined experimental and computational study of environmental stress cracking of amorphous polymers. Polymers for Advanced Technologies, 31.2: 297-308, 2020. https://doi.org/10.1002/pat.4769
  • L.F. Al-Saidi, K. Mortensen and K. Almdal, Environmental stress cracking resistance. Behaviour of polycarbonate in different chemicals by determination of the time-dependence of stress at constant strains. Polymer Degradation and Stability, 82.3:451-461, 2003.https://doi.org/10.1016/S0141-3910(03)00199-X
  • J. Nomai and A. K. Schlrb, Environmental stress cracking (ESC) resistance of polycarbonate/SiO2 nanocomposites in different media. Journal of Applied Polymer Science, 134 (43), 45451 2017. https://doi.org/10.1002/app.45451
  • J. Jansen, The plastic killer. Advanced materials and Processes, 50-53, 2004,
  • C.D. Wright, Environmental stress cracking of plastics. iSmithers Rapra Publishing, 1996.
  • V. Altstädt, The influence of molecular variables on fatigue resistance in stress cracking environments. Intrinsic Molecular Mobility and Toughness of Polymers II, 105-152, 2005. https://doi.org/10.1007/b136975
  • J. Nomai, On the Effect of Nanofillers on the Environmental Stress Cracking Resistance of Glassy Polymers. 2019.
  • M. Contino, L. Andena, M. Rink, G. Marra and S. Resta, Time-temperature equivalence in environmental stress cracking of high-density polyethylene. Engineering Fracture Mechanics, 203, 32-43, 2018. https://doi.org/10.1016/j.engfracmech.2018.04.034
  • B. H. Choi, M. Cassiday and P. Jimenez, Improvement of the test procedure of an environmental stress cracking resistance test of high-density polythelene. Experimental Techniques, 33 (4), 43-51, 2009. https://doi.org/10.1111/j.1747-1567.2008.00366.x
  • H. T. Wang, B. R. Pan, Q. G. Du and Y. Q. Li, The strain in the test environmental stress cracking of plastics. Polymer testing, 22 (2), 125-128 2003. https://doi.org/10.1016/S0142-9418(02)00042-9
  • M. Şengül and H.A. Tasdemir, The effect of mold release agents used in injection on environmental stress cracking behavior of polycarbonates. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 331-343, 2023. https://doi.org/10.17341/gazimmfd.947761
  • M. Şengül and H.A. Taşdemir, The evidence of mold releasing agent for environmental stress cracking of polycarbonates. 5. International Conference on Material Science and Technology (IMSTEC 2020), 16-18 October 2020
  • A. Kibar, Süperhidrofobik ve hidrofobik yüzeyler üzerinde sıvı damlası gaz kabarcığı ve sıvı jeti dinamiğinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22 (7), 613-619, 2016. https://doi: 10.5505/pajes.2016.07088
  • J. Li, F. Chen, L. Yang, L. Jiang and Y. Dan, FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 361-367, 2017. https://doi.org/10.1016/j.saa.2017.04.075
  • C. M. Delpech, F. M. B. Coutinho and M. E. S. Habibe, Bisphenol A-based polycarbonates: characterization of commercial samples. Polymer testing, 21 (2), 155-161, 2002. https://doi.org/10.1016/S0142-9418(01)00063-0
  • C. M. Hansen, On predicting environmental stress cracking in polymers. Polymer degradation and stability, 77 (1), 43-53, 2002. https://doi.org/10.1016/S0141-3910(02)00078-2
  • H. W. Milliman, D. Boris and D. A. Schiraldi, Experimental determination of Hansen solubility parameters for select POSS and polymer compounds as a guide to POSS–polymer interaction potentials. Macromolecules, 45 (4), 1931-1936, 2012. https://doi.org/10.1021/ma202685j
  • V. N. S. Pendyala and S. F. Xavier, Prediction of a synergistic blend composition range based on polymer-solvent interactions. Polymer, 38 (14), 3565-3572, 1997. https://doi.org/10.1016/S0032-3861(96)00920-2
  • M. H. Alqarni, N. Haq, P. Alam, M. S. Abdel-kader, A. I. Foudah and F. Shakeel, Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400+ water) cosolvent compositions. Journal of Molecular Liquids, 331, 115700, 2021. https://doi.org/10.1016/j.molliq.2021.115700
  • Surface Tension, Hansen Solubility Parameters, Molar Volume, Enthalpy of Evaporation, and Molecular Weight of Selected Liquids. (2022b). Accudynetest. https://www.accudynetest.com/solubility_table.html

Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi

Year 2023, Volume: 12 Issue: 3, 983 - 989, 15.07.2023
https://doi.org/10.28948/ngumuh.1221428

Abstract

Bu çalışmada, iki farklı polikarbonat ve bir adet polikarbonat/akrilonitril bütadien stiren karışımı reçinelerden üretilmiş numunelerin ÇGÇ davranışı analiz edilmiştir. Araştırma için plastik enjeksiyon kalıplama yöntemi ile endüstride yaygın olarak kullanılan farklı bileşiklere sahip Lexan EXL9330, Lexan EXL5689 ve CYCOLOY Cx 7240-701 reçinelerden deney numuneleri üretilmiştir. Üretilen numunelerin ÇGÇ davranışlarının incelenmesi için çekme testi, ÇGÇD testi gibi mekanik testler uygulanmıştır. Analiz ve ölçüm yöntemleri olarak sırasıyla Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) ve Yüzey Gerilimi / Temas Açısı ölçümü kullanılmıştır. ÇGÇ testlerinde sıvı olarak distile saf su, Polietilen Glikol 400 (PEG400) ve saf gliserin kullanılmıştır. Yapılan testler neticesinde PEG400 ortamında numunelerin çok hızlı bir şekilde hasara uğradıkları gözlemlenmiştir. Hasar mekanizması ÇGÇ olarak değerlendirilmiş, FTIR sonuçları hasar oluşumunda kimyasal bir etkinin olmadığını göstermiştir. Meydana gelen hasarın gevrek kırılma davranışı gösterdiği, malzemenin sünekliğinin ve yüzeyin hidrofilik olmasının hasarda etken olduğu değerlendirilmiştir.

References

  • L. Mascia, Polymers in industry from A to Z: A concise encyclopedia. John Wiley & Sons, 2012.
  • M. Gilbert (ed.), Brydson's plastics materials. William Andrew, 2016.
  • S. Ramakrishna, J. Mayer, E. Wintermantel and K. W. Leong, Biomedical applications of polymer-composite materials: a review. Composites science and technology, 61(9), 1189-1224, 2001. https://doi.org/10.1016/S0266-3538(00)00241-4
  • A. K. Bhalla, Environmental Stress Cracking of Interior Polymers used in the car. MS thesis. NTNU, 2018.
  • D. Kyriacos, Polycarbonates. Brydson's Plastics Materials. Butterworth-Heinemann, 457-485, 2017.
  • P. Mitschang and K. Hildebrandt, Polymer and composite moulding technologies for automotive applications. Advanced materials in automotive engineering. Woodhead Publishing, 210-229, 2012. https://doi.org/10.1533/9780857095466.210
  • M. M. Ferreira and V.D.F.C Lins, Failure in automobile headlight lenses. Engineering Failure Analysis, 104, 844-855,2019. https://doi.org/10.1016/j.engfailanal.2019.06.051
  • P.R. Lewis, Environmental stress cracking of polycarbonate catheter connectors. Engineering Failure Analysis, 16.6:1816-1824, 2009, https://doi.org/10.1016/j.engfailanal.2008.08.026
  • A. Kausar, A review of filled and pristine polycarbonate blends and their applications. Journal of Plastic Film & Sheeting, 34.1: 60-97, 2018. https://doi.org/10.1177/8756087917691088
  • L. Andena, M. Rink, C. Marano, F. Briatico-Vangosa and L. Castellani, Effect of processing on the environmental stress cracking resistance of high-impact polystyrene. Polymer Testing, 54: 40-47, 2016. https://doi.org/10.1016/j.polymertesting.2016.06.017
  • M. L. Robeson, Environmental stress cracking: A review. Polymer Engineering & Science, 53.3: 453-467, 2013. https://doi.org/10.1002/pen.23284
  • S. Koch, M. Meunier, C. Hopmann and D. Alperstein, A combined experimental and computational study of environmental stress cracking of amorphous polymers. Polymers for Advanced Technologies, 31.2: 297-308, 2020. https://doi.org/10.1002/pat.4769
  • L.F. Al-Saidi, K. Mortensen and K. Almdal, Environmental stress cracking resistance. Behaviour of polycarbonate in different chemicals by determination of the time-dependence of stress at constant strains. Polymer Degradation and Stability, 82.3:451-461, 2003.https://doi.org/10.1016/S0141-3910(03)00199-X
  • J. Nomai and A. K. Schlrb, Environmental stress cracking (ESC) resistance of polycarbonate/SiO2 nanocomposites in different media. Journal of Applied Polymer Science, 134 (43), 45451 2017. https://doi.org/10.1002/app.45451
  • J. Jansen, The plastic killer. Advanced materials and Processes, 50-53, 2004,
  • C.D. Wright, Environmental stress cracking of plastics. iSmithers Rapra Publishing, 1996.
  • V. Altstädt, The influence of molecular variables on fatigue resistance in stress cracking environments. Intrinsic Molecular Mobility and Toughness of Polymers II, 105-152, 2005. https://doi.org/10.1007/b136975
  • J. Nomai, On the Effect of Nanofillers on the Environmental Stress Cracking Resistance of Glassy Polymers. 2019.
  • M. Contino, L. Andena, M. Rink, G. Marra and S. Resta, Time-temperature equivalence in environmental stress cracking of high-density polyethylene. Engineering Fracture Mechanics, 203, 32-43, 2018. https://doi.org/10.1016/j.engfracmech.2018.04.034
  • B. H. Choi, M. Cassiday and P. Jimenez, Improvement of the test procedure of an environmental stress cracking resistance test of high-density polythelene. Experimental Techniques, 33 (4), 43-51, 2009. https://doi.org/10.1111/j.1747-1567.2008.00366.x
  • H. T. Wang, B. R. Pan, Q. G. Du and Y. Q. Li, The strain in the test environmental stress cracking of plastics. Polymer testing, 22 (2), 125-128 2003. https://doi.org/10.1016/S0142-9418(02)00042-9
  • M. Şengül and H.A. Tasdemir, The effect of mold release agents used in injection on environmental stress cracking behavior of polycarbonates. Journal of the Faculty of Engineering and Architecture of Gazi University, 38(1), 331-343, 2023. https://doi.org/10.17341/gazimmfd.947761
  • M. Şengül and H.A. Taşdemir, The evidence of mold releasing agent for environmental stress cracking of polycarbonates. 5. International Conference on Material Science and Technology (IMSTEC 2020), 16-18 October 2020
  • A. Kibar, Süperhidrofobik ve hidrofobik yüzeyler üzerinde sıvı damlası gaz kabarcığı ve sıvı jeti dinamiğinin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22 (7), 613-619, 2016. https://doi: 10.5505/pajes.2016.07088
  • J. Li, F. Chen, L. Yang, L. Jiang and Y. Dan, FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 361-367, 2017. https://doi.org/10.1016/j.saa.2017.04.075
  • C. M. Delpech, F. M. B. Coutinho and M. E. S. Habibe, Bisphenol A-based polycarbonates: characterization of commercial samples. Polymer testing, 21 (2), 155-161, 2002. https://doi.org/10.1016/S0142-9418(01)00063-0
  • C. M. Hansen, On predicting environmental stress cracking in polymers. Polymer degradation and stability, 77 (1), 43-53, 2002. https://doi.org/10.1016/S0141-3910(02)00078-2
  • H. W. Milliman, D. Boris and D. A. Schiraldi, Experimental determination of Hansen solubility parameters for select POSS and polymer compounds as a guide to POSS–polymer interaction potentials. Macromolecules, 45 (4), 1931-1936, 2012. https://doi.org/10.1021/ma202685j
  • V. N. S. Pendyala and S. F. Xavier, Prediction of a synergistic blend composition range based on polymer-solvent interactions. Polymer, 38 (14), 3565-3572, 1997. https://doi.org/10.1016/S0032-3861(96)00920-2
  • M. H. Alqarni, N. Haq, P. Alam, M. S. Abdel-kader, A. I. Foudah and F. Shakeel, Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400+ water) cosolvent compositions. Journal of Molecular Liquids, 331, 115700, 2021. https://doi.org/10.1016/j.molliq.2021.115700
  • Surface Tension, Hansen Solubility Parameters, Molar Volume, Enthalpy of Evaporation, and Molecular Weight of Selected Liquids. (2022b). Accudynetest. https://www.accudynetest.com/solubility_table.html
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering, Material Production Technologies
Journal Section Materials and Metallurgical Engineering
Authors

Hacı Abdullah Taşdemir 0000-0002-2836-5488

Early Pub Date May 22, 2023
Publication Date July 15, 2023
Submission Date December 19, 2022
Acceptance Date April 24, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Taşdemir, H. A. (2023). Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 983-989. https://doi.org/10.28948/ngumuh.1221428
AMA Taşdemir HA. Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi. NOHU J. Eng. Sci. July 2023;12(3):983-989. doi:10.28948/ngumuh.1221428
Chicago Taşdemir, Hacı Abdullah. “Enjeksiyon kalıplama yöntemiyle üretilmiş Polikarbonat Malzemelerin çevresel Gerilme çatlaması davranışlarının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 983-89. https://doi.org/10.28948/ngumuh.1221428.
EndNote Taşdemir HA (July 1, 2023) Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 983–989.
IEEE H. A. Taşdemir, “Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 983–989, 2023, doi: 10.28948/ngumuh.1221428.
ISNAD Taşdemir, Hacı Abdullah. “Enjeksiyon kalıplama yöntemiyle üretilmiş Polikarbonat Malzemelerin çevresel Gerilme çatlaması davranışlarının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 983-989. https://doi.org/10.28948/ngumuh.1221428.
JAMA Taşdemir HA. Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi. NOHU J. Eng. Sci. 2023;12:983–989.
MLA Taşdemir, Hacı Abdullah. “Enjeksiyon kalıplama yöntemiyle üretilmiş Polikarbonat Malzemelerin çevresel Gerilme çatlaması davranışlarının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 983-9, doi:10.28948/ngumuh.1221428.
Vancouver Taşdemir HA. Enjeksiyon kalıplama yöntemiyle üretilmiş polikarbonat malzemelerin çevresel gerilme çatlaması davranışlarının incelenmesi. NOHU J. Eng. Sci. 2023;12(3):983-9.

download