Research Article
BibTex RIS Cite

Thermal buckling analysis of laminated plates with variable angle fiber orientation

Year 2023, Volume: 12 Issue: 3, 912 - 918, 15.07.2023
https://doi.org/10.28948/ngumuh.1241416

Abstract

The thermal buckling response of square plates with variable angle tows under simply supported conditions is modeled numerically. The path of variable angle tow is modeled as a function of lateral location. The classical lamination theory utilizes fiber paths to calculate thermal loads and stiffness matrices. Using Kirchhoff plate theory and finite element theory, the global material stiffness matrix and the global geometric stiffness matrix of the plate under thermal buckling loads are obtained. By using these matrices, eigenvalues or critical buckling temperature is obtained and the buckling response of the plate is examined. The theoretical results are validated by studies in the literature and finite element models. It has been seen even in an unoptimized span of a sample composite material, variable angle tows (VATs) were 8,60% more resistant to thermal buckling than common composite lay-ups.

References

  • V. Halbmillion, High-speed aircraft and aerodynamic heating. The Scientific Monthly, 69, 173–179, 1949. https://www.jstor.org/stable/19673.
  • R. M. Jones, Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates. Composites Part A: Applied Science and Manufacturing, 36 (10), 2005. https://doi.org/10.1016/j.compositesa.2005.01.028.
  • K. B. Armstrong, L. G. Bevan, W. F. Cole, In Care and repair of Advanced Composites, 2’nd Ed., SAE International, pp. 1–4, 2005.
  • Z. Wu, P. M. Weaver, G. Raju, B. Chul Kim, Buckling analysis and optimisation of variable angle tow composite plates. Thin-Walled Structures, 60, 163–172, 2012. https://doi.org/10.1016/j.tws.2012.07.008.
  • Z. Gurdal, B. F. Tatting, C. K. Wu, Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response. Composites Part A: Applied Science and Manufacturing, 39 (5), 911–922, 2008. https://doi.org/10.1016/j.compositesa.2007.11.0 15.
  • A. V. Duran, N. A. Fasanella, V. Sundararaghavan, A. M. Waas, Thermal buckling of composite plates with spatial varying fiber orientations. Composite Structures, 124, 228–235, 2015. https://doi.org/ 10.1016/j.compstruct.2014.12.065.
  • A. W. Leissa, Buckling of laminated composite plates and shell panels. Defence Technical Information Center, 1986.
  • G. R. Liu, S. S. Quek, The finite element method: A practical course, Elsevier, 2014. https://doi.org/10.101 6/C2012-0-00779-X.
  • E. L. Wilson, Three-dimensional static and dynamic analysis of structures: A physical approach with emphasis on earthquake engineering. Computers and Structures, 1995.
  • Scia Engineers, Initial stress. SCIA structural analysis software and design tools, https://help.scia.net/ 22.0/en/#analysis/nonlinear_analysis/beam_local_nonlinearity/initial_stress.htm, Accessed 07 June 2022.
  • N. E. Shanmugam, R. Narayanan, Structural analysis. ICE Manual of Bridge Engineering, pp. 49-112, November 2008, https://www.icevirtuallibrary.com/ doi/abs/10.1680/mobe.34525.0049.
  • T. Kant, C. S. Babu, Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Composite Structures, 49 (1), 77–85, 2000. https://doi.org/10.1016 /s0263-8223(99)00127-0.

Değişken fiber açılı kompozit plakların termal burkulma analizi

Year 2023, Volume: 12 Issue: 3, 912 - 918, 15.07.2023
https://doi.org/10.28948/ngumuh.1241416

Abstract

Bu çalışmada, değişken açılı fiberlere sahip kare kompozit plakaların basit mesnet koşulu altında termal burkulma analizini yapmak için bir kod geliştirilmiştir. Değişken açılı fiberlerin oryantasyonu, yatay konumun bir fonksiyonu olarak modellenmiştir. Klasik laminasyon teorisi, termal yükleri ve direngenlik matrislerini hesaplamak için fiber yollarını kullanır. Khirchoff plaka teorisi ve sonlu elemanlar teorisinin modelleme yöntemleri kullanılarak, termal burkulma altındaki plakanın global malzeme rijitlik matrisi ve global geometrik rijitlik matrisi elde edilmiştir. Bu matrislere gerekli işlemler uygulanarak bu analiz için özdeğerler, yani kritik burkulma sıcaklığı elde edilebilir ve plakanın durumu yorumlanabilir. Sayısal çalışmadan elde edilen sonuçlar, literatürdeki çalışmalar ve sonlu eleman modelleri ile doğrulanmıştır. Örnek bir kompozit malzemenin optimize edilmemiş bir aralığında bile, değişken açılı kompozitlerin düz serimli kompozitlere göre termal burkulmaya karşı %8,60 daha dirençli olduğu görülmüştür.

References

  • V. Halbmillion, High-speed aircraft and aerodynamic heating. The Scientific Monthly, 69, 173–179, 1949. https://www.jstor.org/stable/19673.
  • R. M. Jones, Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates. Composites Part A: Applied Science and Manufacturing, 36 (10), 2005. https://doi.org/10.1016/j.compositesa.2005.01.028.
  • K. B. Armstrong, L. G. Bevan, W. F. Cole, In Care and repair of Advanced Composites, 2’nd Ed., SAE International, pp. 1–4, 2005.
  • Z. Wu, P. M. Weaver, G. Raju, B. Chul Kim, Buckling analysis and optimisation of variable angle tow composite plates. Thin-Walled Structures, 60, 163–172, 2012. https://doi.org/10.1016/j.tws.2012.07.008.
  • Z. Gurdal, B. F. Tatting, C. K. Wu, Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response. Composites Part A: Applied Science and Manufacturing, 39 (5), 911–922, 2008. https://doi.org/10.1016/j.compositesa.2007.11.0 15.
  • A. V. Duran, N. A. Fasanella, V. Sundararaghavan, A. M. Waas, Thermal buckling of composite plates with spatial varying fiber orientations. Composite Structures, 124, 228–235, 2015. https://doi.org/ 10.1016/j.compstruct.2014.12.065.
  • A. W. Leissa, Buckling of laminated composite plates and shell panels. Defence Technical Information Center, 1986.
  • G. R. Liu, S. S. Quek, The finite element method: A practical course, Elsevier, 2014. https://doi.org/10.101 6/C2012-0-00779-X.
  • E. L. Wilson, Three-dimensional static and dynamic analysis of structures: A physical approach with emphasis on earthquake engineering. Computers and Structures, 1995.
  • Scia Engineers, Initial stress. SCIA structural analysis software and design tools, https://help.scia.net/ 22.0/en/#analysis/nonlinear_analysis/beam_local_nonlinearity/initial_stress.htm, Accessed 07 June 2022.
  • N. E. Shanmugam, R. Narayanan, Structural analysis. ICE Manual of Bridge Engineering, pp. 49-112, November 2008, https://www.icevirtuallibrary.com/ doi/abs/10.1680/mobe.34525.0049.
  • T. Kant, C. S. Babu, Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models. Composite Structures, 49 (1), 77–85, 2000. https://doi.org/10.1016 /s0263-8223(99)00127-0.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering, Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Fatih Baran 0000-0003-2660-8885

Demet Balkan 0000-0002-5807-2731

Early Pub Date May 22, 2023
Publication Date July 15, 2023
Submission Date January 24, 2023
Acceptance Date April 11, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Baran, F., & Balkan, D. (2023). Thermal buckling analysis of laminated plates with variable angle fiber orientation. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 912-918. https://doi.org/10.28948/ngumuh.1241416
AMA Baran F, Balkan D. Thermal buckling analysis of laminated plates with variable angle fiber orientation. NOHU J. Eng. Sci. July 2023;12(3):912-918. doi:10.28948/ngumuh.1241416
Chicago Baran, Fatih, and Demet Balkan. “Thermal Buckling Analysis of Laminated Plates With Variable Angle Fiber Orientation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 912-18. https://doi.org/10.28948/ngumuh.1241416.
EndNote Baran F, Balkan D (July 1, 2023) Thermal buckling analysis of laminated plates with variable angle fiber orientation. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 912–918.
IEEE F. Baran and D. Balkan, “Thermal buckling analysis of laminated plates with variable angle fiber orientation”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 912–918, 2023, doi: 10.28948/ngumuh.1241416.
ISNAD Baran, Fatih - Balkan, Demet. “Thermal Buckling Analysis of Laminated Plates With Variable Angle Fiber Orientation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 912-918. https://doi.org/10.28948/ngumuh.1241416.
JAMA Baran F, Balkan D. Thermal buckling analysis of laminated plates with variable angle fiber orientation. NOHU J. Eng. Sci. 2023;12:912–918.
MLA Baran, Fatih and Demet Balkan. “Thermal Buckling Analysis of Laminated Plates With Variable Angle Fiber Orientation”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 912-8, doi:10.28948/ngumuh.1241416.
Vancouver Baran F, Balkan D. Thermal buckling analysis of laminated plates with variable angle fiber orientation. NOHU J. Eng. Sci. 2023;12(3):912-8.

download