Research Article
BibTex RIS Cite

Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study

Year 2023, Volume: 12 Issue: 3, 950 - 956, 15.07.2023
https://doi.org/10.28948/ngumuh.1248442

Abstract

It is important to better understand the impact of intervertebral cage material and design on the stress distribution in vertebral bodies to aid eliminate complications like subsidence and improve performance after lumbar interbody fusion. In this study, the cage materials of PLA, PEEK, titanium, and stainless steel were compared using a finite element model of the L3-L4 motion segment. Strain and stress were measured in the vertebra and cage when the model was loaded in axial compression, flexion, and torsion. Additionally, a wider cage designed to conform to the vertebral endplates could potentially evenly distribute and reduce the overall stress at the endplates. The wider cages increased the area in contact with the bone, distributing the stress more evenly and providing a potential way to decrease the danger of subsidence. Such cages could be manufactured by additive manufacturing.

References

  • A. Faadhila, S.F. Rahman, Y. Whulanza, S. Supriadi, J.Y. Tampubolon, S.I. Wicaksana and A.H. Abdullah, Design of a Transforaminal Lumbar Interbody Fusion (TLIF) Spine Cage. International Journal of Technology, 13(8), 1663-1671, 2022. https://doi.org/10.14716/ijtech.v13i8.6152
  • E. Chong, M. H. Pelletier, R. J. Mobbs and W. R. Walsh, The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC musculoskeletal disorders, 16, 1-11, 2015. https://doi.org/10.1186/s12891-015-0546-x
  • D. S. Xu, C. T. Walker, J. Godzik, J. D. Turner, W. Smith and J. S. Uribe, Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Annals of translational medicine, 6(6), 1-10, 2018. https://doi.org/10.21037/atm.2018.03.24
  • S. Choudhury, D. Raja, S. Roy and S. Datta, Stress analysis of different types of cages in cervical vertebrae: a finite element study, Materials Science and Engineering, 912 (2), 022025, 2020. https://doi.org/10.1088/1757-899X/912/2/022025
  • J. H. Peck, K. D. Kavlock, B. L. Showalter, B. M. Ferrell, D. G. Peck and A. E. Dmitriev, Mechanical performance of lumbar intervertebral body fusion devices: an analysis of data submitted to the Food and Drug Administration. Journal of Biomechanics, 78, 87-93, 2018. https://doi.org/10.1016/j.jbiomech.2018.07.022
  • S. J. Kim, Y. S. Lee, Y. B. Kim, S. W. Park and V. T. Hung, Clinical and radiological outcomes of a new cage for direct lateral lumbar interbody fusion. Korean Journal of Spine, 11(3), 145-147, 2014 https://doi.org/10.14245/kjs.2014.11.3.145
  • A. T. Güner ve C. Meran, Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 54-67, 2020. https://doi.org/10.5505/pajes.2019.46666
  • H. T. Hee and V. Kundnani, Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. The Spine Journal, 10(1), 66-69, 2010. https://doi.org/10.1016/j.spinee.2009.10.014
  • M. van Dijk, T. H. Smit, S. Sugihara, E. H. Burger and P. I. Wuisman, The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An: In Vivo: Model Using Poly (L-Lactic Acid) and Titanium Cages. Spine, 27(7), 682-688, 2002. https://doi.org/10.1097/00007632-200204010-00003
  • L. Pimenta, A. W. Turner, Z. A. Dooley, R. D. Parikh and M. D. Peterson, Biomechanics of lateral interbody spacers: going wider for going stiffer. The Scientific World Journal, 2012.381814. 2012. https://doi.org/10.1100/2012/381814
  • B. Jost, P. A. Cripton, T. Lund, T. R. Oxland, K. Lippuner, P. Jaeger and L. P. Nolte, Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. European Spine Journal, 7, 132-141, 1998. https://doi.org/10.1007/s005860050043
  • M. Krammer, R. Dietl, C. B. Lumenta, A. Kettler, H. J. Wilke, A. Büttner and L. Claes, Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta neurochirurgica, 143, 1217-1222, 2001. https://doi.org/10.1007/s007010100017
  • T. G. Lowe, S. Hashim, L. A. Wilson, M. F. O’Brien, D. A. Smith, M. J. Diekmann and J. Trommeter, A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine, 29(21), 2389-2394, 2004. https://doi.org/10.1097/01.brs.0000143623.18098.e5
  • T. Lund, T. R. Oxland, B. Jost, P. Cripton, S. Grassmann, C. Etter and L. P. Nolte, Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. The Journal of bone and joint surgery. British volume, 80(2), 351-359, 1998. https://doi.org/10.1302/0301-620x.80b2.7693
  • H. Kang, S. J. Hollister, F. La Marca, P. Park and C. Y. Lin, Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering. Journal of biomechanical engineering, 135(10), 101013, 2013. https://doi.org/10.1115/1.4025102
  • R. Sala, S. Regondi and R. Pugliese, Design Data and Finite Element Analysis of 3D Printed Poly (ε-Caprolactone)-Based Lattice Scaffolds: Influence of Type of Unit Cell, Porosity, and Nozzle Diameter on the Mechanical Behavior. Eng, 3(1), 9-23, 2022. https://doi.org/10.3390/eng3010002
  • H. Zhang, D. Hao, H. Sun, S. He, B. Wang, H. Hu and Y. Zhang, Biomechanical effects of direction-changeable cage positions on lumbar spine: a finite element study. American Journal of Translational Research, 12(2), 389-396, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061850/
  • H. Ding, L. Liao, P. Yan, X. Zhao and M. Li, Three-dimensional finite element analysis of l4-5 degenerative lumbar disc traction under different pushing heights. Journal of Healthcare Engineering, 1322397, 2021. https://doi.org/10.1155/2021/1322397
  • E. Jalilvand, N. Abollfathi, M. Khajehzhadeh and M. Hassani-Gangaraj, Optimization of cervical cage and analysis of its base material: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236(11), 1613-1625, 2022. https://doi.org/10.1177/09544119221128467
  • S. Dayanand, B. R. Kumar, A. Rao, C. CV, M. B. Khot and H. Shetty, Finite element modelling and dynamic characteristic analysis of the human CTL-Spine. Vibroengineering Procedia, 30, 116-120, 2020. https://doi.org/10.21595/vp.2020.21390
  • R. A. SI, C. CV and P. Goplani, Fracture strength estimation of L3-L4 intervertebral disc using FEA. Vibroengineering Procedia, 27, 67-72, 2019. https://doi.org/10.21595/vp.2019.20976
  • M. H. Jalil, M. H. Mazlan and M. Todo, Biomechanical comparison of polymeric spinal cages using Ct based finite element method. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(2), 110-117, 2017. https://doi.org/10.17706/ijbbb.2017.7.2.110-117
  • A. Kugendran, L. Mahendran and M. H. bin Jalil, Finite Element Analysis Of Different Spinal Cage Designs For Posterior Lumbar Interbody Fusion. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 7, 51-57, 2021. https://doi.org/10.5109/4738560
  • D. Amalraju and A. S. Dawood, Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture. Engineering Science and Technology: An International Journal, 2(3), 381-388, 2012.
  • L. S. Chatham, V. V. Patel, C. M. Yakacki and R. Dana Carpenter, Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. Journal of biomechanical engineering, 139(5), 0510051-0510058, 2017. https://doi.org/10.1115/1.4036312
  • C. H. Song, J. S. Park, B. W. Choi, J. S. Lee and C. S. Lee, Computational Investigation for Biomechanical Characteristics of Lumbar Spine with Various Porous Ti–6Al–4V Implant Systems. Applied Sciences, 11(17), 8023, 2021. https://doi.org/10.3390/app11178023
  • T. Serra, C. Capelli, R. Toumpaniari, I. R. Orriss, J. J. H. Leong, K. Dalgarno and D. M. Kalaskar, Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication, 8(3), 035001, 2016. https://doi.org/10.1088/1758-5090/8/3/035001
  • N. Nishida, F. Jiang, J. Ohgi, M. Fuchida, R. Kitazumi, Y. Yamamura and T. Sakai, Biomechanical Analysis of the Spine in Diffuse Idiopathic Skeletal Hyperostosis: Finite Element Analysis. Applied Sciences, 11(19), 8944, 2021. https://doi.org/10.3390/app11198944
  • W. Cho, C. Wu, A. A. Mehbod and E. E. Transfeldt, Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. Clinical Biomechanics, 23(8), 979-985, 2008. https://doi.org/10.1016/j.clinbiomech.2008.02.008
  • K. Phan and R. J. Mobbs, Evolution of design of interbody cages for anterior lumbar interbody fusion. Orthopaedic surgery, 8(3), 270-277, 2016. https://doi.org/10.1111/os.12259
  • X. Miao and D. Sun, Graded/gradient porous biomaterials. Materials, 3(1), 26-47, 2009. https://doi.org/10.3390/ma3010026
  • A. Calvo-Echenique, J. Cegoñino, R. Chueca and A. Pérez-del Palomar, Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement. Computer methods and programs in biomedicine, 162, 211-219, 2018. https://doi.org/10.1016/j.cmpb.2018.05.022
  • B. Yu, C. Zhang, C. Qin and H. Yuan, FE modeling and analysis of L4-L5 lumbar segment under physiological loadings. Technology and Health Care, 23(s2), S383-S396, 2015. https://doi.org/10.3233/THC-150975.

Daha geniş lateral lumbar interbody füzyon (LLIF) kafeslerinin tasarımı ve stres analizi: Bir sonlu eleman çalışması

Year 2023, Volume: 12 Issue: 3, 950 - 956, 15.07.2023
https://doi.org/10.28948/ngumuh.1248442

Abstract

Lateral Lumbar Interbody Füzyon operasyonu sonrası çökme gibi komplikasyonları ortadan kaldırmaya ve performansı artırmaya yardımcı olmak için intervertebral kafes malzemesinin ve tasarımının omur gövdelerindeki stres dağılımı üzerindeki etkisini daha iyi anlamak oldukça önemlidir. Bu çalışmada PLA, PEEK, titanyum ve paslanmaz çelik kafes malzemeleri, L3-L4 omur segmentinin sonlu elemanlar modeli kullanılarak karşılaştırılmıştır. Model eksenel bası, eğme ve dönme momentinde yüklendiğinde omur ve kafeste gerinim ve gerilim değerleri ölçülmüştür. Ayrıca, vertebral plakalara uyacak şekilde tasarlanmış daha geniş bir kafes, potansiyel olarak plakalardaki genel gerilimi eşit şekilde dağıtabilir ve azaltabilir. Daha geniş kafesler, kemikle temas halindeki alanı arttırarak, stresi daha eşit dağıtmıştır ve çökme tehlikesini azaltmak için potansiyel bir yol sağlamıştır. Bu tür kafesler eklemeli imalat ile üretilebilir.

References

  • A. Faadhila, S.F. Rahman, Y. Whulanza, S. Supriadi, J.Y. Tampubolon, S.I. Wicaksana and A.H. Abdullah, Design of a Transforaminal Lumbar Interbody Fusion (TLIF) Spine Cage. International Journal of Technology, 13(8), 1663-1671, 2022. https://doi.org/10.14716/ijtech.v13i8.6152
  • E. Chong, M. H. Pelletier, R. J. Mobbs and W. R. Walsh, The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC musculoskeletal disorders, 16, 1-11, 2015. https://doi.org/10.1186/s12891-015-0546-x
  • D. S. Xu, C. T. Walker, J. Godzik, J. D. Turner, W. Smith and J. S. Uribe, Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Annals of translational medicine, 6(6), 1-10, 2018. https://doi.org/10.21037/atm.2018.03.24
  • S. Choudhury, D. Raja, S. Roy and S. Datta, Stress analysis of different types of cages in cervical vertebrae: a finite element study, Materials Science and Engineering, 912 (2), 022025, 2020. https://doi.org/10.1088/1757-899X/912/2/022025
  • J. H. Peck, K. D. Kavlock, B. L. Showalter, B. M. Ferrell, D. G. Peck and A. E. Dmitriev, Mechanical performance of lumbar intervertebral body fusion devices: an analysis of data submitted to the Food and Drug Administration. Journal of Biomechanics, 78, 87-93, 2018. https://doi.org/10.1016/j.jbiomech.2018.07.022
  • S. J. Kim, Y. S. Lee, Y. B. Kim, S. W. Park and V. T. Hung, Clinical and radiological outcomes of a new cage for direct lateral lumbar interbody fusion. Korean Journal of Spine, 11(3), 145-147, 2014 https://doi.org/10.14245/kjs.2014.11.3.145
  • A. T. Güner ve C. Meran, Ortopedik implantlarda kullanılan biyomalzemeler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 54-67, 2020. https://doi.org/10.5505/pajes.2019.46666
  • H. T. Hee and V. Kundnani, Rationale for use of polyetheretherketone polymer interbody cage device in cervical spine surgery. The Spine Journal, 10(1), 66-69, 2010. https://doi.org/10.1016/j.spinee.2009.10.014
  • M. van Dijk, T. H. Smit, S. Sugihara, E. H. Burger and P. I. Wuisman, The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An: In Vivo: Model Using Poly (L-Lactic Acid) and Titanium Cages. Spine, 27(7), 682-688, 2002. https://doi.org/10.1097/00007632-200204010-00003
  • L. Pimenta, A. W. Turner, Z. A. Dooley, R. D. Parikh and M. D. Peterson, Biomechanics of lateral interbody spacers: going wider for going stiffer. The Scientific World Journal, 2012.381814. 2012. https://doi.org/10.1100/2012/381814
  • B. Jost, P. A. Cripton, T. Lund, T. R. Oxland, K. Lippuner, P. Jaeger and L. P. Nolte, Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. European Spine Journal, 7, 132-141, 1998. https://doi.org/10.1007/s005860050043
  • M. Krammer, R. Dietl, C. B. Lumenta, A. Kettler, H. J. Wilke, A. Büttner and L. Claes, Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta neurochirurgica, 143, 1217-1222, 2001. https://doi.org/10.1007/s007010100017
  • T. G. Lowe, S. Hashim, L. A. Wilson, M. F. O’Brien, D. A. Smith, M. J. Diekmann and J. Trommeter, A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine, 29(21), 2389-2394, 2004. https://doi.org/10.1097/01.brs.0000143623.18098.e5
  • T. Lund, T. R. Oxland, B. Jost, P. Cripton, S. Grassmann, C. Etter and L. P. Nolte, Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. The Journal of bone and joint surgery. British volume, 80(2), 351-359, 1998. https://doi.org/10.1302/0301-620x.80b2.7693
  • H. Kang, S. J. Hollister, F. La Marca, P. Park and C. Y. Lin, Porous biodegradable lumbar interbody fusion cage design and fabrication using integrated global-local topology optimization with laser sintering. Journal of biomechanical engineering, 135(10), 101013, 2013. https://doi.org/10.1115/1.4025102
  • R. Sala, S. Regondi and R. Pugliese, Design Data and Finite Element Analysis of 3D Printed Poly (ε-Caprolactone)-Based Lattice Scaffolds: Influence of Type of Unit Cell, Porosity, and Nozzle Diameter on the Mechanical Behavior. Eng, 3(1), 9-23, 2022. https://doi.org/10.3390/eng3010002
  • H. Zhang, D. Hao, H. Sun, S. He, B. Wang, H. Hu and Y. Zhang, Biomechanical effects of direction-changeable cage positions on lumbar spine: a finite element study. American Journal of Translational Research, 12(2), 389-396, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061850/
  • H. Ding, L. Liao, P. Yan, X. Zhao and M. Li, Three-dimensional finite element analysis of l4-5 degenerative lumbar disc traction under different pushing heights. Journal of Healthcare Engineering, 1322397, 2021. https://doi.org/10.1155/2021/1322397
  • E. Jalilvand, N. Abollfathi, M. Khajehzhadeh and M. Hassani-Gangaraj, Optimization of cervical cage and analysis of its base material: A finite element study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236(11), 1613-1625, 2022. https://doi.org/10.1177/09544119221128467
  • S. Dayanand, B. R. Kumar, A. Rao, C. CV, M. B. Khot and H. Shetty, Finite element modelling and dynamic characteristic analysis of the human CTL-Spine. Vibroengineering Procedia, 30, 116-120, 2020. https://doi.org/10.21595/vp.2020.21390
  • R. A. SI, C. CV and P. Goplani, Fracture strength estimation of L3-L4 intervertebral disc using FEA. Vibroengineering Procedia, 27, 67-72, 2019. https://doi.org/10.21595/vp.2019.20976
  • M. H. Jalil, M. H. Mazlan and M. Todo, Biomechanical comparison of polymeric spinal cages using Ct based finite element method. International Journal of Bioscience, Biochemistry and Bioinformatics, 7(2), 110-117, 2017. https://doi.org/10.17706/ijbbb.2017.7.2.110-117
  • A. Kugendran, L. Mahendran and M. H. bin Jalil, Finite Element Analysis Of Different Spinal Cage Designs For Posterior Lumbar Interbody Fusion. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 7, 51-57, 2021. https://doi.org/10.5109/4738560
  • D. Amalraju and A. S. Dawood, Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture. Engineering Science and Technology: An International Journal, 2(3), 381-388, 2012.
  • L. S. Chatham, V. V. Patel, C. M. Yakacki and R. Dana Carpenter, Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. Journal of biomechanical engineering, 139(5), 0510051-0510058, 2017. https://doi.org/10.1115/1.4036312
  • C. H. Song, J. S. Park, B. W. Choi, J. S. Lee and C. S. Lee, Computational Investigation for Biomechanical Characteristics of Lumbar Spine with Various Porous Ti–6Al–4V Implant Systems. Applied Sciences, 11(17), 8023, 2021. https://doi.org/10.3390/app11178023
  • T. Serra, C. Capelli, R. Toumpaniari, I. R. Orriss, J. J. H. Leong, K. Dalgarno and D. M. Kalaskar, Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment. Biofabrication, 8(3), 035001, 2016. https://doi.org/10.1088/1758-5090/8/3/035001
  • N. Nishida, F. Jiang, J. Ohgi, M. Fuchida, R. Kitazumi, Y. Yamamura and T. Sakai, Biomechanical Analysis of the Spine in Diffuse Idiopathic Skeletal Hyperostosis: Finite Element Analysis. Applied Sciences, 11(19), 8944, 2021. https://doi.org/10.3390/app11198944
  • W. Cho, C. Wu, A. A. Mehbod and E. E. Transfeldt, Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. Clinical Biomechanics, 23(8), 979-985, 2008. https://doi.org/10.1016/j.clinbiomech.2008.02.008
  • K. Phan and R. J. Mobbs, Evolution of design of interbody cages for anterior lumbar interbody fusion. Orthopaedic surgery, 8(3), 270-277, 2016. https://doi.org/10.1111/os.12259
  • X. Miao and D. Sun, Graded/gradient porous biomaterials. Materials, 3(1), 26-47, 2009. https://doi.org/10.3390/ma3010026
  • A. Calvo-Echenique, J. Cegoñino, R. Chueca and A. Pérez-del Palomar, Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement. Computer methods and programs in biomedicine, 162, 211-219, 2018. https://doi.org/10.1016/j.cmpb.2018.05.022
  • B. Yu, C. Zhang, C. Qin and H. Yuan, FE modeling and analysis of L4-L5 lumbar segment under physiological loadings. Technology and Health Care, 23(s2), S383-S396, 2015. https://doi.org/10.3233/THC-150975.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering, Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Meltem Eryıldız 0000-0002-2683-560X

Early Pub Date June 15, 2023
Publication Date July 15, 2023
Submission Date February 6, 2023
Acceptance Date May 23, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Eryıldız, M. (2023). Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 950-956. https://doi.org/10.28948/ngumuh.1248442
AMA Eryıldız M. Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study. NOHU J. Eng. Sci. July 2023;12(3):950-956. doi:10.28948/ngumuh.1248442
Chicago Eryıldız, Meltem. “Design and Stress Analysis of Wider Lateral Lumbar Interbody Fusion (LLIF) Cages: A Finite Element Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 950-56. https://doi.org/10.28948/ngumuh.1248442.
EndNote Eryıldız M (July 1, 2023) Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 950–956.
IEEE M. Eryıldız, “Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 950–956, 2023, doi: 10.28948/ngumuh.1248442.
ISNAD Eryıldız, Meltem. “Design and Stress Analysis of Wider Lateral Lumbar Interbody Fusion (LLIF) Cages: A Finite Element Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 950-956. https://doi.org/10.28948/ngumuh.1248442.
JAMA Eryıldız M. Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study. NOHU J. Eng. Sci. 2023;12:950–956.
MLA Eryıldız, Meltem. “Design and Stress Analysis of Wider Lateral Lumbar Interbody Fusion (LLIF) Cages: A Finite Element Study”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 950-6, doi:10.28948/ngumuh.1248442.
Vancouver Eryıldız M. Design and stress analysis of wider lateral lumbar interbody fusion (LLIF) cages: A finite element study. NOHU J. Eng. Sci. 2023;12(3):950-6.

23135