Research Article
BibTex RIS Cite

Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering

Year 2023, Volume: 12 Issue: 3, 957 - 964, 15.07.2023
https://doi.org/10.28948/ngumuh.1269037

Abstract

In this study, the effect of SnCl2 treatment on SnS thin films was investigated. SnS thin films were grown by RF sputtering and SnCl2 treatment was applied by wet chemical processing. While the samples grouped as SnCl2 heat treated and annealed were subjected to annealing in air atm, the as-deposited sample was not applied any annealing process. The as-deposited sample grew in the orthorhombic SnS phase. Annealing of the SnS sample in air environment led to the formation of orthorhombic SnS as well as non-dominant SnS2 and SnO2 phases. It was found that applying SnCl2 heat treatment to SnS deteriorated the crystallization and especially the SnO2 oxide phase became more dominant. Raman spectra confirmed the presence of SnS and SnS2 phases in the samples, but no evidence of SnO2 phase was found. SEM images showed bladelike, dense grain formation in the as-deposited and annealed samples. However, SnCl2 heat treatment completely changed the surface morphology of the sample, causing it to transform into a structure consisting of several domains split by deep fractures. EDS revealed a distinct Sn-rich composition of the as-deposited and annealed samples (Sn/S~1.2). On the other hand, SnCl2 heat treatment caused a massive loss of sulphur in the atomic distribution of the SnS and it was seen that the Sn/S ratio increased to around 7.5. The band gaps of the as-deposited and annelaed samples were calculated as 1.43 eV and 1.45, respectively. However, SnCl2 heat treatment led to an increase to 1.56 eV of the band gap. Analysis results show that SnCl2 treatment by the wet processing causes a significant change on the characteristics of SnS thin film. In this context, it can be said that SnCl2 heat treatment can be further improved with optimization processes.

Thanks

A. Çiriş would like to thank to Y. Atasoy for the XRD, SEM and EDS measurements and M.A. Olgar for the material source

References

  • K.R. Reddy, N.K. Reddy, R. Miles, Photovoltaic properties of SnS based solar cells. Solar energy materials and solar cells, 90 (18-19), 3041-3046, 2006, https://doi.org/10.1016/j.solmat.2006.06.012.
  • P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS‐based solar cells. Advanced Energy Materials, 4 (15), 1400496, 2014, https://doi.org/ 10.1002/aenm.201400496.
  • W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 32 (3), 510-519, 1961, https://doi.org/10.1063/1.1736034.
  • S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, A. Romeo, SnS thin film solar cells: perspectives and limitations. Coatings, 7 (2), 34, 2017, https://doi.org/10.3390/coatings 7020034.
  • N. Koteeswara Reddy, M. Devika, E. Gopal, Review on tin (II) sulfide (SnS) material: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 40 (6), 359-398, 2015, https://doi.org/10.1080/10408436.2015.1053601.
  • R. Banai, M. Horn, J. Brownson, A review of tin (II) monosulfide and its potential as a photovoltaic absorber. Solar energy materials and solar cells, 150, 112-129, 2016, https://doi.org/10.1016/j.solmat.2015. 12.001.
  • N. Revathi, S. Bereznev, M. Loorits, J. Raudoja, J. Lehner, J. Gurevits, R. Traksmaa, V. Mikli, E. Mellikov, O. Volobujeva, Annealing effect for SnS thin films prepared by high-vacuum evaporation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32 (6), 061506, 2014, https://doi.org/10.1116/1.4896334.
  • M. Olgar, A. Çiriş, M. Tomakin, R. Zan, Impact of in/ex situ annealing and reaction temperature on structural, optical and electrical properties of SnS thin films. Journal of Molecular Structure, 1241, 130631, 2021, https://doi.org/10.1016/j.molstruc.2021.130631.
  • I.M. Dharmadasa, Review of the CdCl2 Treatment Used in CdS/CdTe Thin Film Solar Cell Development and New Evidence towards Improved Understanding. Coatings, 4 (2), 282-307, 2014, http://doi.org/ 10.3390/coatings4020282.
  • N.A. Shah, Z. Rabeel, M. Abbas, W.A. Syed, Effects of CdCl2 treatment on physical properties of CdTe/CdS thin film solar cell. Modern Technologies for Creating the Thin-film Systems and Coatings, 2017, http://dx.doi.org/10.5772/67191.
  • S. Di Mare, A. Salavei, D. Menossi, F. Piccinelli, P. Bernardi, E. Artegiani, A. Kumar, G. Mariotto, A. Romeo, A study of SnS recrystallization by post deposition treatment. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 0431-0434, 2016, http://doi.org/10.1109/PVSC.2016.7749627.
  • N. Spalatu, J. Hiie, R. Kaupmees, O. Volobujeva, J. Krustok, I. Oja Acik, M. Krunks, Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux. ACS Applied Materials & Interfaces, 11 (19), 17539-17554, 2019, https://doi.org/10.1021/acsami. 9b03213.
  • S.C. Ray, M.K. Karanjai, D. DasGupta, Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air. Thin Solid Films, 350 (1-2), 72-78, 1999, https://doi.org/10.1016/S0040-6090(99)00276-X.
  • B.H. Baby, D.B. Mohan, The effect of in-situ and post deposition annealing towards the structural optimization studies of RF sputtered SnS and Sn2S3 thin films for solar cell application. Solar Energy, 189, 207-218, 2019, https://doi.org/10.1016/j.solener.2019. 07.059.
  • V.R.M. Reddy, S. Gedi, C. Park, R. Miles, R.R. KT, Development of sulphurized SnS thin film solar cells. Current Applied Physics, 15 (5), 588-598, 2015, https://doi.org/10.1016/j.cap.2015.01.022.
  • H. Chandrasekhar, R. Humphreys, U. Zwick, M. Cardona, Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Physical Review B, 15 (4), 2177, 1977, https://doi.org/10.1103/PhysRevB.15. 2177.
  • S. Sohila, M. Rajalakshmi, C. Ghosh, A. Arora, C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles. Journal of Alloys and Compounds, 509 (19), 5843-5847, 2011, https://doi.org/10.1016/j.jallcom.2011.02.141.
  • J.M. Skelton, L.A. Burton, A.J. Jackson, F. Oba, S.C. Parker, A. Walsh, Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Physical Chemistry Chemical Physics, 19 (19), 12452-12465, 2017, https://doi.org/10.1039/ C7CP01680H.
  • A. Smith, P. Meek, W. Liang, Raman scattering studies of SnS2 and SnSe2. Journal of Physics C: Solid State Physics, 10 (8), 1321, 1977, https://doi.org/ 10.1088/0022-3719/10/8/035.
  • N. Revathi, S. Bereznev, J. Iljina, M. Safonova, E. Mellikov, O. Volobujeva, PVD grown SnS thin films onto different substrate surfaces. Journal of Materials Science: Materials in Electronics, 24, 4739-4744, 2013, http://doi.org/10.1007/s10854-013-1468-8.
  • R. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticles using fiber-optic sensor. Sensors and Actuators B: Chemical, 169, 199-207, 2012, https://doi.org/10.1016/j.snb.2012.04.067.
  • O.V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-Gargand, T. Ericson, C. Platzer-Björkman, M. Edoff, C. Hägglund, Atomic layer deposition of cubic and orthorhombic phase tin monosulfide. Chemistry of Materials, 29 (7), 2969-2978, 2017, https://doi.org/ 10.1021/acs.chemmater.6b05323.
  • V.K. Arepalli, Y. Shin, J. Kim, Influence of working pressure on the structural, optical, and electrical properties of RF-sputtered SnS thin films. Superlattices and Microstructures, 122, 253-261, 2018, https://doi.org/10.1016/j.spmi.2018.08.001.
  • J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15 (2), 627-637, 1966, http://doi.org/10.1002/pssb.19660150224.
  • P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. 9 (23), 6814-6817, 2018, https://doi.org/ 10.1021/acs.jpclett.8b02892.
  • J. Xu, Y. Yang, Z. Xie, Effect of vacuum annealing on the properties of sputtered SnS thin films. Chalcogenide Letters, 11 (10), 485-491, 2014.
  • P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films, 548, 241-246, 2013, https://doi.org/10.1016/j.tsf.2013.09.089.
  • P. Norouzzadeh, K. Mabhouti, M. Golzan, R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik, 204, 164227, 2020, https://doi.org/10.1016/j.ijleo.2020. 164227.
  • F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical review, 92 (5), 1324, 1953.
  • M. Messaoudi, S. Boudour, Extent of dependence of crystalline, morphological, optical and electrical properties on deposition time of sprayed SnS thin films. Microscopy Research and Technique, 86 (3), 342-350, 2023, https://doi.org/10.1002/jemt.24275.

RF saçtırma ile üretilen SnS ince filmlerine SnCl2 ısıl işleminin etkisi

Year 2023, Volume: 12 Issue: 3, 957 - 964, 15.07.2023
https://doi.org/10.28948/ngumuh.1269037

Abstract

Bu çalışmada SnCl2 işleminin SnS ince filmlerine etkisi araştırıldı. SnS ince filmleri, RF saçtırma ile büyütülürken, SnCl2 işlemi ıslak kimyasal yöntem ile uygulandı. SnCl2 ısıl işlemi uygulanan ve tavlanan olarak gruplandırılan örnekler, hava atmosferinde ısıl işlemine tabi tutulurken, tavlanmayan örneğe herhangi bir ısıl işlem uygulanmadı. Hiçbir işlem uygulanmayan örnek, ortorombik SnS fazında büyüdü. SnS örneğinin hava ortamında tavlanması, ortorombik SnS'nin yanı sıra baskın olmayan SnS2 ve SnO2 fazlarının oluşumuna neden oldu. SnS'ye SnCl2 ısıl işlemi uygulanmasının kristallenmeyi kötüleştirdiği ve özellikle SnO2 oksit fazının daha baskın hale getirdiği görüldü. Raman spektrumları, numunelerde SnS ve SnS2 fazlarının varlığını doğruladı, ancak SnO2 fazına dair bir bulguya rastlanmadı. SEM görüntüleri, işlem uygulanmayan ve tavlanan örneklerde bıçağa benzeyen, yoğun tane oluşumu sergiledi. Bununla birlikte, SnCl2 ısıl işlemi, numunenin yüzey morfolojisini tamamen değiştirerek, derin kırıklarla bölünen birkaç bölgeden oluşan bir yapıya neden oldu. EDS, işlem uygulanmayan ve tavlanan numunelerin belirgin bir Sn zengini kompozisyonunu ortaya çıkardı (Sn/S~1.2). SnCl2 ısıl işlemi ise SnS’nin atomik dağılımında büyük bir kükürt kaybına neden olarak Sn/S oranının 7.5 civarına yükselmesine yol açtı. İşlem görmeyen ve tavlanan örneklerin bant aralıkları, sırasıyla 1.43 eV ve 1,45 olarak hesaplandı. Bununla birlikte, SnCl2 ısıl işlemi, bant aralığının 1.56 eV'ye yükselmesine neden oldu. Analiz sonuçları, ıslak kimyasal yöntem ile SnCl2 ısıl işlemi uygulanmasının SnS ince filmlerin özelliklerinde ciddi bir değişime neden olduğunu göstermektedir. Bu bağlamda, SnCl2 ısıl işleminin optimizasyon süreçleriyle daha da geliştirilebileceği söylenebilir.

References

  • K.R. Reddy, N.K. Reddy, R. Miles, Photovoltaic properties of SnS based solar cells. Solar energy materials and solar cells, 90 (18-19), 3041-3046, 2006, https://doi.org/10.1016/j.solmat.2006.06.012.
  • P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, R.G. Gordon, Overcoming efficiency limitations of SnS‐based solar cells. Advanced Energy Materials, 4 (15), 1400496, 2014, https://doi.org/ 10.1002/aenm.201400496.
  • W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 32 (3), 510-519, 1961, https://doi.org/10.1063/1.1736034.
  • S. Di Mare, D. Menossi, A. Salavei, E. Artegiani, F. Piccinelli, A. Kumar, G. Mariotto, A. Romeo, SnS thin film solar cells: perspectives and limitations. Coatings, 7 (2), 34, 2017, https://doi.org/10.3390/coatings 7020034.
  • N. Koteeswara Reddy, M. Devika, E. Gopal, Review on tin (II) sulfide (SnS) material: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 40 (6), 359-398, 2015, https://doi.org/10.1080/10408436.2015.1053601.
  • R. Banai, M. Horn, J. Brownson, A review of tin (II) monosulfide and its potential as a photovoltaic absorber. Solar energy materials and solar cells, 150, 112-129, 2016, https://doi.org/10.1016/j.solmat.2015. 12.001.
  • N. Revathi, S. Bereznev, M. Loorits, J. Raudoja, J. Lehner, J. Gurevits, R. Traksmaa, V. Mikli, E. Mellikov, O. Volobujeva, Annealing effect for SnS thin films prepared by high-vacuum evaporation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 32 (6), 061506, 2014, https://doi.org/10.1116/1.4896334.
  • M. Olgar, A. Çiriş, M. Tomakin, R. Zan, Impact of in/ex situ annealing and reaction temperature on structural, optical and electrical properties of SnS thin films. Journal of Molecular Structure, 1241, 130631, 2021, https://doi.org/10.1016/j.molstruc.2021.130631.
  • I.M. Dharmadasa, Review of the CdCl2 Treatment Used in CdS/CdTe Thin Film Solar Cell Development and New Evidence towards Improved Understanding. Coatings, 4 (2), 282-307, 2014, http://doi.org/ 10.3390/coatings4020282.
  • N.A. Shah, Z. Rabeel, M. Abbas, W.A. Syed, Effects of CdCl2 treatment on physical properties of CdTe/CdS thin film solar cell. Modern Technologies for Creating the Thin-film Systems and Coatings, 2017, http://dx.doi.org/10.5772/67191.
  • S. Di Mare, A. Salavei, D. Menossi, F. Piccinelli, P. Bernardi, E. Artegiani, A. Kumar, G. Mariotto, A. Romeo, A study of SnS recrystallization by post deposition treatment. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 0431-0434, 2016, http://doi.org/10.1109/PVSC.2016.7749627.
  • N. Spalatu, J. Hiie, R. Kaupmees, O. Volobujeva, J. Krustok, I. Oja Acik, M. Krunks, Postdeposition processing of SnS thin films and solar cells: prospective strategy to obtain large, sintered, and doped SnS grains by recrystallization in the presence of a metal halide flux. ACS Applied Materials & Interfaces, 11 (19), 17539-17554, 2019, https://doi.org/10.1021/acsami. 9b03213.
  • S.C. Ray, M.K. Karanjai, D. DasGupta, Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air. Thin Solid Films, 350 (1-2), 72-78, 1999, https://doi.org/10.1016/S0040-6090(99)00276-X.
  • B.H. Baby, D.B. Mohan, The effect of in-situ and post deposition annealing towards the structural optimization studies of RF sputtered SnS and Sn2S3 thin films for solar cell application. Solar Energy, 189, 207-218, 2019, https://doi.org/10.1016/j.solener.2019. 07.059.
  • V.R.M. Reddy, S. Gedi, C. Park, R. Miles, R.R. KT, Development of sulphurized SnS thin film solar cells. Current Applied Physics, 15 (5), 588-598, 2015, https://doi.org/10.1016/j.cap.2015.01.022.
  • H. Chandrasekhar, R. Humphreys, U. Zwick, M. Cardona, Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Physical Review B, 15 (4), 2177, 1977, https://doi.org/10.1103/PhysRevB.15. 2177.
  • S. Sohila, M. Rajalakshmi, C. Ghosh, A. Arora, C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles. Journal of Alloys and Compounds, 509 (19), 5843-5847, 2011, https://doi.org/10.1016/j.jallcom.2011.02.141.
  • J.M. Skelton, L.A. Burton, A.J. Jackson, F. Oba, S.C. Parker, A. Walsh, Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Physical Chemistry Chemical Physics, 19 (19), 12452-12465, 2017, https://doi.org/10.1039/ C7CP01680H.
  • A. Smith, P. Meek, W. Liang, Raman scattering studies of SnS2 and SnSe2. Journal of Physics C: Solid State Physics, 10 (8), 1321, 1977, https://doi.org/ 10.1088/0022-3719/10/8/035.
  • N. Revathi, S. Bereznev, J. Iljina, M. Safonova, E. Mellikov, O. Volobujeva, PVD grown SnS thin films onto different substrate surfaces. Journal of Materials Science: Materials in Electronics, 24, 4739-4744, 2013, http://doi.org/10.1007/s10854-013-1468-8.
  • R. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticles using fiber-optic sensor. Sensors and Actuators B: Chemical, 169, 199-207, 2012, https://doi.org/10.1016/j.snb.2012.04.067.
  • O.V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-Gargand, T. Ericson, C. Platzer-Björkman, M. Edoff, C. Hägglund, Atomic layer deposition of cubic and orthorhombic phase tin monosulfide. Chemistry of Materials, 29 (7), 2969-2978, 2017, https://doi.org/ 10.1021/acs.chemmater.6b05323.
  • V.K. Arepalli, Y. Shin, J. Kim, Influence of working pressure on the structural, optical, and electrical properties of RF-sputtered SnS thin films. Superlattices and Microstructures, 122, 253-261, 2018, https://doi.org/10.1016/j.spmi.2018.08.001.
  • J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15 (2), 627-637, 1966, http://doi.org/10.1002/pssb.19660150224.
  • P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. 9 (23), 6814-6817, 2018, https://doi.org/ 10.1021/acs.jpclett.8b02892.
  • J. Xu, Y. Yang, Z. Xie, Effect of vacuum annealing on the properties of sputtered SnS thin films. Chalcogenide Letters, 11 (10), 485-491, 2014.
  • P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films, 548, 241-246, 2013, https://doi.org/10.1016/j.tsf.2013.09.089.
  • P. Norouzzadeh, K. Mabhouti, M. Golzan, R. Naderali, Investigation of structural, morphological and optical characteristics of Mn substituted Al-doped ZnO NPs: a Urbach energy and Kramers-Kronig study. Optik, 204, 164227, 2020, https://doi.org/10.1016/j.ijleo.2020. 164227.
  • F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical review, 92 (5), 1324, 1953.
  • M. Messaoudi, S. Boudour, Extent of dependence of crystalline, morphological, optical and electrical properties on deposition time of sprayed SnS thin films. Microscopy Research and Technique, 86 (3), 342-350, 2023, https://doi.org/10.1002/jemt.24275.
There are 30 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Ali Çiriş 0000-0003-4266-2080

Early Pub Date June 20, 2023
Publication Date July 15, 2023
Submission Date March 22, 2023
Acceptance Date May 23, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Çiriş, A. (2023). Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 957-964. https://doi.org/10.28948/ngumuh.1269037
AMA Çiriş A. Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering. NOHU J. Eng. Sci. July 2023;12(3):957-964. doi:10.28948/ngumuh.1269037
Chicago Çiriş, Ali. “Effect of SnCl2 Heat Treatment on SnS Thin Films Deposited by RF Sputtering”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 957-64. https://doi.org/10.28948/ngumuh.1269037.
EndNote Çiriş A (July 1, 2023) Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 957–964.
IEEE A. Çiriş, “Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 957–964, 2023, doi: 10.28948/ngumuh.1269037.
ISNAD Çiriş, Ali. “Effect of SnCl2 Heat Treatment on SnS Thin Films Deposited by RF Sputtering”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 957-964. https://doi.org/10.28948/ngumuh.1269037.
JAMA Çiriş A. Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering. NOHU J. Eng. Sci. 2023;12:957–964.
MLA Çiriş, Ali. “Effect of SnCl2 Heat Treatment on SnS Thin Films Deposited by RF Sputtering”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 957-64, doi:10.28948/ngumuh.1269037.
Vancouver Çiriş A. Effect of SnCl2 heat treatment on SnS thin films deposited by RF sputtering. NOHU J. Eng. Sci. 2023;12(3):957-64.

download