Research Article
BibTex RIS Cite

Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi

Year 2023, Volume: 12 Issue: 3, 965 - 972, 15.07.2023
https://doi.org/10.28948/ngumuh.1274879

Abstract

İşitme, insanlardaki beş duyudan biri olup sosyal yaşam için önemlidir. İnsan kulağının doğru ve kapsamlı bir sonlu eleman modelinin oluşturulması ses iletiminin daha iyi anlaşılmasını sağlayabilir. Bu çalışmada, insan orta kulağının bir sonlu eleman (FE) modeli geliştirilerek stapes tabanındaki titreşim nedeni ile oluşan hız ve genlik etkilerinin frekans spektrumundaki değişimi araştırılmıştır. İnsan orta kulak sistemi üzerindeki geometrik modeller, literatürdeki orta kulak bileşenlerinin özellikleri dikkate alınarak CAD yazılımı (Solidworks) ile oluşturulmuştur. FE modeli olarak Ansys yazılımı kullanılmıştır. 100 Hz ile 10 kHz frekans aralığında timpanik membrandan 90 dB SPL(ses basınç seviyesi)’ye eşit olan 0.632 Pa ses basıncı uygulanmıştır. Elde edilen sonuca göre sağlıklı insan orta kulak modelinin stapes tabanında 500 Hz'de 3.43E-05 mm'lik genlik ve 1.07E-01 mm/s’lik hızla en yüksek değerlere ulaşıldığı görülmüştür. Stapes tabanında 10 kHz'e kadar da kademeli olarak genlik ve hız değerlerinin azaldığı, sayısal açıdan da önemli bir farkın oluşmadığı tespit edilmiştir. Elde edilen bulguların literatür ile tutarlı olduğu belirlenmiştir.

References

  • K. L. Moore and A. F. Dalley, Clinically oriented anatomy. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2018.
  • S. Shaho, Finite-Element Modelling of the Newborn Middle Ear at Two Different Ages. Master Thesis, The Faculty of Medicine of the Eberhard Karls Universitat Tubingen, 2020.
  • F. Gentil, M. Parente, P. Martins, C. Santos, E. Almeida, A. Ferreıra and R. Natal, Numerical study of Hough technique in surgery of otosclerosis,using the finite element method. Acta of Bioengineering and Biomechanics, 17, 4, 2015. https://doi.org/10.5277/ABB-00289-2015-03.
  • V. Gyliene ̇, V. Eidukynas, G. Gylys, and S. Murugesan, Numerical analysis of stapes prosthesis constraining in the case of otosclerosis. Materials (Basel), 14(24), 7747, 2021. https://doi.org/10.3390/ma14247747.
  • Ö. Oymak Ay, İşitme Rekonstrüksiyonunda Glass İonomer Cement Kullanımının Fonksiyonel Sonuçları. Uzmanlık Tezi, Çukurova Üniversitesi, Tıp Fakültesi Kulak Burun Boğaz Anabilim Dalı, 2015.
  • Hidayat, S. Okamoto, J. H. Lee, K. Matsuura, N. Hato, H. Yamada and D. Takagi, Dynamics analyses of human middle ear system using finite element method. Full Paper Proceeding, 127(5), 10-21, 2016.
  • E. Sözen, Ö. Yıldırım, Y. O. Ucal, Ö. Unsal, B. Uslu Coşkun and B. Dadaş, Bone cement ossiculoplasty: our long-term results. Turk Arch Otolaryngol, 51(2), 37-40, 2013. https://doi.org/10.5152/Tao.2013.12.
  • E. Ocak, İşitme Rekonstrüksiyonunda Kullanılan Yöntemlerin Fonksiyonel ve Anatomik Sonuçlarının Değerlendirilmesi. Uzmanlık Tezi, Ankara Üniversitesi Tıp Fakültesi, 2013.
  • S. S. Balu, A. B. Deoghare and K. M. Pandey, Design and Modeling of Human Middle Ear for Harmonic Response Analysis. International Scholarly and Scientific Research & Innovation, 12(2), 2018.
  • M. H. Fritsch and I. C. Naumann, Phylogeny of the stapes prosthesis. Otology & Neurotology, 29, 407-415, 2008. http://doi.org/10.1097/MAO.0b013e3181690775.
  • Z. Çiler Büyükatalay, A. Hasanova, M. Baydan, S. Yılmaz and C. Meco, Stapedotomi cerrahisinde teflon ve titanyum pistonun odyolojik sonuçlarının karşılaştırması. Kbb-Forum, 18(3), 193-198, 2019.
  • A. Koukkoullis, Innovations in stapes surgery. Doktora Tezi, Doctoral School of Clinical Medical Sciences Medical School, University of Pécs, Hungary, 2022.
  • M. Uçar, Hidroksiapatit Kemik Çimento ve Porp (Parsiyel Ossiküloplasti Replasman Protezi) Kullanılan Kulak Operasyonları Sonrasında İşitme Sonuçlarının Karşılaştırılması. Uzmanlık Tezi, İzmir Katip Çelebi Üniversitesi Atatürk Eğitim ve Araştırma Hastanesi Kulak Burun Boğaz Anabilim Dalı, 2017.
  • D. D. Walker and S. C. Babu, History of ossicular chain reconstruction. Current Otorhinolaryngology Reports, 8(6), 61–64, 2020. https://doi.org/10.1007/s40136-020-00259-w.
  • A. Koukkoullis, I. Gerlinger, A. Kovács, Z. Szakács, Z. Piski, I. Szanyi, I. Tóth and P. Révész, Comparing intermediate-term hearing results of NiTiBOND and Nitinol prostheses in stapes surgery. The Journal of Laryngology & Otology, 135(9), 795-798, 2020. https://doi.org/10.1017/S0022215121001821.
  • J. T. Jr. McElveen, R. A. Tange and I. C. Naumann, Prosthesis selection in stapessurgery. Current Otorhinolaryngology Reports, 10, 23–33, 2022. https://doi.org/10.1007/s40136-021-00381-3.
  • K. Sıvacı, E. E. Özgüvenç and Y. Bozkurt, Biyomedikal uygulamalarında eklemeli imalat teknolojileri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 503–522, 2022. https://doi.org/10.17482/uumfd.991197.
  • T. S. Ahn, M. J. Baek and D. Lee, Experimental measurement of tympanic membrane response for finite element model validation of a human middle ear. Springer Plus, 2(1), 527, 2013. https://doi.org/10.1186/2193-1801-2-527.
  • R. Z. Gan, B. Feng and Q. Sun, Three-dimensional finite element modeling of human ear for sound transmission. Annals of Biomedical Engineering, 32(6), 847–859, 2004. http://doi.org/0090-6964/04/0600-0847/1.
  • F. Gentil, M. Parente, P. Martins, C. Garbe, R. N. Jorge, A. Ferreira and J. M.R.S. Tavares, The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225(1), 68-76, 2010. http://doi.org/10.1243/09544119jeım783.
  • K. Krzysztof, K. Wojciech and R. Rafal, FEM model of middle ear prosthesis with pseudo-elastic effect. Computer Methods in Mechanics, 1922(1), 1-6, 2018. https://doi.org/10.1063/1.5019129.
  • F. Gentil, C. Garbe, M. Parente, P. , Martins, C. Santos, E. Almeida and R. N. Jorge, The biomechanical effects of stapes replacement by prostheses on the tympano-ossicular chain. International Journal for Numerical Methods in Biomedical Engineering, 30(12), 1409 –1420, 2014. http://doi.org/10.1002/cnm.2664.
  • Hidayat, S. Okamoto, J. H. Lee, N. Hato, H. Yamada and D. Takagi, Finite element dynamics of human ear system comprising middle ear and cochlea in ınner ear. Journal of Biomedical Science and Engineering, 9(13), 597-610, 2016. https://doi.org/10.4236/jbise.2016.913051.
  • R. Z. Gan, B. P. Reeves and X. Wang, Modeling of sound transmission from ear canal to cochlea. Annals of Biomedical Engineering, 35(12), 2180-2195, (2007. http://doi.org/10.1007/s10439-007-9366-y.
  • Y. Liu, S. Li and X. Sun, Numerical analysis of ossicular chain lesion of human ear. Acta Mechanica Sinica, 25, 241-247, 2009. https://doi.org/10.1007/s10409-008-0206-6.
  • B. Areias, Santos, R. N. Natal Jorge, Gentil, F. and M. P. L. Parente, Finite element modelling of sound transmission from outer to inner. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(11), 999-1007, 2016. https://doi.org/10.1177/0954411916666109.
  • Y. C. Hsieh, D. M. Hai and Y. L. Hsieh, A Three-dimensional lump model on performances of the stapes displacement under different mechanics property conditions of a middle ear. International Journal of Acoustics and Vibration, 25(2), 162-173, 2019. https://doi.org/10.20855/ijav.2020.25.21543.
  • F. Zeynalov, Otosklerozlu Hastalarda Yüksek Rezolüsyonlu Bilgisayarlı Tomografide Dansitometri Ölçümleri ile Stapes Açısı ve Fasiyal Sinir Stapes Mesafesi Arasındaki İlişki. Uzmanlık Tezi, Atatürk Eğitim ve Araştırma Hastanesi Radyoloji Kliniği, 2018.
  • L. B. Fragoso, M. De C. Magalhães, E.B. de L. Casas, Santos, J. N. A. T. V. Rabelo and R. C. Oliveira, A mass-spring model of the auditory system in otosclerosis. Revista Brasileira de Engenharia Biomedica, 30(3), 281-288, 2014. http://dx.doi.org/10.1590/1517-3151.0252.
  • J. Zhang, C. Jiao, D. Zou, N. Ta and Z. Rao, Assigning viscoelastic and hyperelastic properties to the middle‑ear soft tissues for sound transmission. Biomechanics and Modeling in Mechanobiology, 19(3), 957–970, 2019. https://doi.org/10.1007/s10237-019-01263-w.
  • B. Areias, M. Parente, F. Gentil, C. Santos and R. N. Jorge, A numerical study of the human ear. IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), 2017. https://doi.org/10.1109/ENBENG.2017.7889442.
  • L. Mendonça, C. F. Santos, F. Gentil, M. Parente, B. Areias and R. N. Jorge, On the hearing effects of a cholesteatoma growing: A biomechanical study. J Engineering in Medicine, 236(1), 72–83, 2022. https://doi.org/10.1177/09544119211046675.
  • W. Yao, B. Li, X. Huang, C. Guo, X. Luo, W. Zhou and M. Duan, Restoring hearing using total ossicular replacement prostheses analysis of 3d finite element model. Acta Oto-Laryngologica, 132, 152–159, 2012. https://doi.org/10.3109/00016489.2011.633229.
  • H. Liu, W. Wang, Y. Zhao, J. Yang, S. Yang, X. Huang and W. Liu, Effect of stimulation sites on the performance of electromagnetic middle ear implant: A finite element analysis. Computers in Biology and Medicine, 124, 103918, 2020. https://doi.org/10.1016/j.compbiomed.2020.103918.
  • S. Seıvur, S. H. Rathnakara and G. K. Ananthasuresh, Design of a S-shape middle-ear ossicular replacement prosthesis and its comparison with present-day prostheses using finite element modelling. 2022. https://doi.org/10.1007/s12046-022-02000-3.
  • Q. Sun, R. Z. Gan, K. H. Chang and K. J. Dormer, Computer-integrated finite element modeling of human middle ear. Biomechanics and Modeling in Mechanobiology, 1, 109–122, 2002. https://doi.org/10.1007/s10237-002-0014-z.

Modeling of middle ear design and acoustic harmonic performance with finite element method

Year 2023, Volume: 12 Issue: 3, 965 - 972, 15.07.2023
https://doi.org/10.28948/ngumuh.1274879

Abstract

Hearing is one of the five senses in humans and is important for social life. An accurate and comprehensive finite element model of the human ear can provide a better understanding of sound transmission. In this study, a finite element (FE) model of the human middle ear is developed to investigate the variation of velocity and amplitude effects in the frequency spectrum due to vibration at the base of the stapes. Geometric models of the human middle ear system were created with CAD software (Solidworks), taking into account the characteristics of middle ear components in the literature. Ansys software was used as FE model. In the frequency range of 100 Hz to 10 kHz, 0.632 Pa sound pressure equal to 90 dB SPL (sound pressure level) was applied through the eardrum. According to the results obtained, it was observed that the highest values of 3.43E-05 mm amplitude and 1.07E-01 mm/s velocity were reached at 500 Hz at the base of the stapes of the healthy human middle ear model. It was determined that the amplitude and velocity values gradually decreased until 10 kHz at the base of the stapes, and no significant numerical difference was observed. It was determined that the findings were consistent with the literature.

References

  • K. L. Moore and A. F. Dalley, Clinically oriented anatomy. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2018.
  • S. Shaho, Finite-Element Modelling of the Newborn Middle Ear at Two Different Ages. Master Thesis, The Faculty of Medicine of the Eberhard Karls Universitat Tubingen, 2020.
  • F. Gentil, M. Parente, P. Martins, C. Santos, E. Almeida, A. Ferreıra and R. Natal, Numerical study of Hough technique in surgery of otosclerosis,using the finite element method. Acta of Bioengineering and Biomechanics, 17, 4, 2015. https://doi.org/10.5277/ABB-00289-2015-03.
  • V. Gyliene ̇, V. Eidukynas, G. Gylys, and S. Murugesan, Numerical analysis of stapes prosthesis constraining in the case of otosclerosis. Materials (Basel), 14(24), 7747, 2021. https://doi.org/10.3390/ma14247747.
  • Ö. Oymak Ay, İşitme Rekonstrüksiyonunda Glass İonomer Cement Kullanımının Fonksiyonel Sonuçları. Uzmanlık Tezi, Çukurova Üniversitesi, Tıp Fakültesi Kulak Burun Boğaz Anabilim Dalı, 2015.
  • Hidayat, S. Okamoto, J. H. Lee, K. Matsuura, N. Hato, H. Yamada and D. Takagi, Dynamics analyses of human middle ear system using finite element method. Full Paper Proceeding, 127(5), 10-21, 2016.
  • E. Sözen, Ö. Yıldırım, Y. O. Ucal, Ö. Unsal, B. Uslu Coşkun and B. Dadaş, Bone cement ossiculoplasty: our long-term results. Turk Arch Otolaryngol, 51(2), 37-40, 2013. https://doi.org/10.5152/Tao.2013.12.
  • E. Ocak, İşitme Rekonstrüksiyonunda Kullanılan Yöntemlerin Fonksiyonel ve Anatomik Sonuçlarının Değerlendirilmesi. Uzmanlık Tezi, Ankara Üniversitesi Tıp Fakültesi, 2013.
  • S. S. Balu, A. B. Deoghare and K. M. Pandey, Design and Modeling of Human Middle Ear for Harmonic Response Analysis. International Scholarly and Scientific Research & Innovation, 12(2), 2018.
  • M. H. Fritsch and I. C. Naumann, Phylogeny of the stapes prosthesis. Otology & Neurotology, 29, 407-415, 2008. http://doi.org/10.1097/MAO.0b013e3181690775.
  • Z. Çiler Büyükatalay, A. Hasanova, M. Baydan, S. Yılmaz and C. Meco, Stapedotomi cerrahisinde teflon ve titanyum pistonun odyolojik sonuçlarının karşılaştırması. Kbb-Forum, 18(3), 193-198, 2019.
  • A. Koukkoullis, Innovations in stapes surgery. Doktora Tezi, Doctoral School of Clinical Medical Sciences Medical School, University of Pécs, Hungary, 2022.
  • M. Uçar, Hidroksiapatit Kemik Çimento ve Porp (Parsiyel Ossiküloplasti Replasman Protezi) Kullanılan Kulak Operasyonları Sonrasında İşitme Sonuçlarının Karşılaştırılması. Uzmanlık Tezi, İzmir Katip Çelebi Üniversitesi Atatürk Eğitim ve Araştırma Hastanesi Kulak Burun Boğaz Anabilim Dalı, 2017.
  • D. D. Walker and S. C. Babu, History of ossicular chain reconstruction. Current Otorhinolaryngology Reports, 8(6), 61–64, 2020. https://doi.org/10.1007/s40136-020-00259-w.
  • A. Koukkoullis, I. Gerlinger, A. Kovács, Z. Szakács, Z. Piski, I. Szanyi, I. Tóth and P. Révész, Comparing intermediate-term hearing results of NiTiBOND and Nitinol prostheses in stapes surgery. The Journal of Laryngology & Otology, 135(9), 795-798, 2020. https://doi.org/10.1017/S0022215121001821.
  • J. T. Jr. McElveen, R. A. Tange and I. C. Naumann, Prosthesis selection in stapessurgery. Current Otorhinolaryngology Reports, 10, 23–33, 2022. https://doi.org/10.1007/s40136-021-00381-3.
  • K. Sıvacı, E. E. Özgüvenç and Y. Bozkurt, Biyomedikal uygulamalarında eklemeli imalat teknolojileri. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 503–522, 2022. https://doi.org/10.17482/uumfd.991197.
  • T. S. Ahn, M. J. Baek and D. Lee, Experimental measurement of tympanic membrane response for finite element model validation of a human middle ear. Springer Plus, 2(1), 527, 2013. https://doi.org/10.1186/2193-1801-2-527.
  • R. Z. Gan, B. Feng and Q. Sun, Three-dimensional finite element modeling of human ear for sound transmission. Annals of Biomedical Engineering, 32(6), 847–859, 2004. http://doi.org/0090-6964/04/0600-0847/1.
  • F. Gentil, M. Parente, P. Martins, C. Garbe, R. N. Jorge, A. Ferreira and J. M.R.S. Tavares, The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225(1), 68-76, 2010. http://doi.org/10.1243/09544119jeım783.
  • K. Krzysztof, K. Wojciech and R. Rafal, FEM model of middle ear prosthesis with pseudo-elastic effect. Computer Methods in Mechanics, 1922(1), 1-6, 2018. https://doi.org/10.1063/1.5019129.
  • F. Gentil, C. Garbe, M. Parente, P. , Martins, C. Santos, E. Almeida and R. N. Jorge, The biomechanical effects of stapes replacement by prostheses on the tympano-ossicular chain. International Journal for Numerical Methods in Biomedical Engineering, 30(12), 1409 –1420, 2014. http://doi.org/10.1002/cnm.2664.
  • Hidayat, S. Okamoto, J. H. Lee, N. Hato, H. Yamada and D. Takagi, Finite element dynamics of human ear system comprising middle ear and cochlea in ınner ear. Journal of Biomedical Science and Engineering, 9(13), 597-610, 2016. https://doi.org/10.4236/jbise.2016.913051.
  • R. Z. Gan, B. P. Reeves and X. Wang, Modeling of sound transmission from ear canal to cochlea. Annals of Biomedical Engineering, 35(12), 2180-2195, (2007. http://doi.org/10.1007/s10439-007-9366-y.
  • Y. Liu, S. Li and X. Sun, Numerical analysis of ossicular chain lesion of human ear. Acta Mechanica Sinica, 25, 241-247, 2009. https://doi.org/10.1007/s10409-008-0206-6.
  • B. Areias, Santos, R. N. Natal Jorge, Gentil, F. and M. P. L. Parente, Finite element modelling of sound transmission from outer to inner. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(11), 999-1007, 2016. https://doi.org/10.1177/0954411916666109.
  • Y. C. Hsieh, D. M. Hai and Y. L. Hsieh, A Three-dimensional lump model on performances of the stapes displacement under different mechanics property conditions of a middle ear. International Journal of Acoustics and Vibration, 25(2), 162-173, 2019. https://doi.org/10.20855/ijav.2020.25.21543.
  • F. Zeynalov, Otosklerozlu Hastalarda Yüksek Rezolüsyonlu Bilgisayarlı Tomografide Dansitometri Ölçümleri ile Stapes Açısı ve Fasiyal Sinir Stapes Mesafesi Arasındaki İlişki. Uzmanlık Tezi, Atatürk Eğitim ve Araştırma Hastanesi Radyoloji Kliniği, 2018.
  • L. B. Fragoso, M. De C. Magalhães, E.B. de L. Casas, Santos, J. N. A. T. V. Rabelo and R. C. Oliveira, A mass-spring model of the auditory system in otosclerosis. Revista Brasileira de Engenharia Biomedica, 30(3), 281-288, 2014. http://dx.doi.org/10.1590/1517-3151.0252.
  • J. Zhang, C. Jiao, D. Zou, N. Ta and Z. Rao, Assigning viscoelastic and hyperelastic properties to the middle‑ear soft tissues for sound transmission. Biomechanics and Modeling in Mechanobiology, 19(3), 957–970, 2019. https://doi.org/10.1007/s10237-019-01263-w.
  • B. Areias, M. Parente, F. Gentil, C. Santos and R. N. Jorge, A numerical study of the human ear. IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), 2017. https://doi.org/10.1109/ENBENG.2017.7889442.
  • L. Mendonça, C. F. Santos, F. Gentil, M. Parente, B. Areias and R. N. Jorge, On the hearing effects of a cholesteatoma growing: A biomechanical study. J Engineering in Medicine, 236(1), 72–83, 2022. https://doi.org/10.1177/09544119211046675.
  • W. Yao, B. Li, X. Huang, C. Guo, X. Luo, W. Zhou and M. Duan, Restoring hearing using total ossicular replacement prostheses analysis of 3d finite element model. Acta Oto-Laryngologica, 132, 152–159, 2012. https://doi.org/10.3109/00016489.2011.633229.
  • H. Liu, W. Wang, Y. Zhao, J. Yang, S. Yang, X. Huang and W. Liu, Effect of stimulation sites on the performance of electromagnetic middle ear implant: A finite element analysis. Computers in Biology and Medicine, 124, 103918, 2020. https://doi.org/10.1016/j.compbiomed.2020.103918.
  • S. Seıvur, S. H. Rathnakara and G. K. Ananthasuresh, Design of a S-shape middle-ear ossicular replacement prosthesis and its comparison with present-day prostheses using finite element modelling. 2022. https://doi.org/10.1007/s12046-022-02000-3.
  • Q. Sun, R. Z. Gan, K. H. Chang and K. J. Dormer, Computer-integrated finite element modeling of human middle ear. Biomechanics and Modeling in Mechanobiology, 1, 109–122, 2002. https://doi.org/10.1007/s10237-002-0014-z.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Mechanical Engineering
Authors

Fatma Uzundemir 0000-0001-6899-621X

Mevlüt Yunus Kayacan 0000-0003-3557-9537

İsmail Şen 0000-0002-9905-3537

Early Pub Date July 12, 2023
Publication Date July 15, 2023
Submission Date March 31, 2023
Acceptance Date June 19, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Uzundemir, F., Kayacan, M. Y., & Şen, İ. (2023). Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 965-972. https://doi.org/10.28948/ngumuh.1274879
AMA Uzundemir F, Kayacan MY, Şen İ. Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi. NOHU J. Eng. Sci. July 2023;12(3):965-972. doi:10.28948/ngumuh.1274879
Chicago Uzundemir, Fatma, Mevlüt Yunus Kayacan, and İsmail Şen. “Orta Kulak tasarımı Ve Akustik Harmonik performansının Sonlu Elemanlar yöntemiyle Modellenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 965-72. https://doi.org/10.28948/ngumuh.1274879.
EndNote Uzundemir F, Kayacan MY, Şen İ (July 1, 2023) Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 965–972.
IEEE F. Uzundemir, M. Y. Kayacan, and İ. Şen, “Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 965–972, 2023, doi: 10.28948/ngumuh.1274879.
ISNAD Uzundemir, Fatma et al. “Orta Kulak tasarımı Ve Akustik Harmonik performansının Sonlu Elemanlar yöntemiyle Modellenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 965-972. https://doi.org/10.28948/ngumuh.1274879.
JAMA Uzundemir F, Kayacan MY, Şen İ. Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi. NOHU J. Eng. Sci. 2023;12:965–972.
MLA Uzundemir, Fatma et al. “Orta Kulak tasarımı Ve Akustik Harmonik performansının Sonlu Elemanlar yöntemiyle Modellenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 965-72, doi:10.28948/ngumuh.1274879.
Vancouver Uzundemir F, Kayacan MY, Şen İ. Orta kulak tasarımı ve akustik harmonik performansının sonlu elemanlar yöntemiyle modellenmesi. NOHU J. Eng. Sci. 2023;12(3):965-72.

download