Review
BibTex RIS Cite

Surface treatments applied to waste tire powder and review of the use of waste tire powder in polymer/original rubber compounds

Year 2024, Volume: 13 Issue: 1, 376 - 384, 15.01.2024
https://doi.org/10.28948/ngumuh.1314087

Abstract

Waste tires are an extremely valuable form of waste in terms of material and amount. Since a sustainable and efficient technology has not yet been developed in the recycling of waste tires, researchers have turned to various applications for the evaluation of this waste. Among these, the evaluation of waste tire powders by adding them to various material compositions has an important place. In these applications, it was observed that the compatibility of the waste rubber powder with the material to which it was added could not be sufficiently achieved due to the nature of the rubber, and as a result, the material properties were adversely affected. Research is continuing intensively to show that various surface treatments (surface modification and surface devulcanization) to be applied to rubber powder increase rubber powder/matrix compatibility. In this study, surface treatments applied to rubber powder were discussed in detail and literature studies on the subject were examined. Studies show that the surface treatments applied to rubber powder increase the compatibility of the powder with the material it is incorporated into.

References

  • K. Formela, Sustainable development of waste tires recycling Technologies - recent advances, challenges and future trends. Advanced Industrial and Engineering Polymer Research, 4, 209-222, 2021. https://doi.org/10.1016/j.aiepr.2021.06.004.
  • E. Markl and M. Lackner, Devulcanization technologies for recycling of tire-derived rubber: a review, Materials, 13, 1246, 2020. http://dx.doi.org/10.3390/ma13051246
  • V. Lapkovskis, V. Mironovs, A. Kasperovich, V. Myadelets and D. Goljandin, Crumb rubber as a secondary raw material from waste rubber: a short review of end-of-life mechanical processing methods. Recycling, 5, 32, 2020. https://doi.org/10.3390/recycling5040032
  • B. Adhikari, D. De and S. Maiti, Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909–948, 2000. https://doi.org/10.1016/S0079-6700(00)00020-4
  • J. Karger-Kocsis, L. Mészáros and T. Bárány, Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Materials Science, 48, 1-38, 2013. https://doi.org/10.1007/s10853-012-6564-2
  • M. M. Phiri, M. J. Phiri, K. Formela and S. P. Hlangothi S. P., 2021. Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development - a review. Composites Part B, 204, 108429, 2021. https://doi.org/10.1016/j.compositesb.2020.108429
  • G. Lazorenko, A. Kasprzhitskii and V. Mischinenko, 2021. Rubberized geopolymer composites: Effect of filler surface treatment. Journal of Environmental Chemical Engineering, 9, 10560, 2021. https://doi.org/10.1016/j.jece.2021.105601
  • K. Klajn, T. Gozdek, D. M. Bielinski, M. Sicinski, M. Zarzecka-Napierała and Z. Pedzich, SBR vulcanizates filled with modified ground tire rubber. Materials, 14, 3991, 2021. https://doi.org/10.3390/ma14143991
  • J. Araujo-Morera, R. Verdugo-Manzanares, S. González, R. Verdejo, M. A. Lopez-Manchado and M. H. Santana, On the use of mechano-chemically modified ground tire rubber (GTR) as recycled and sustainable filler in styrene-butadiene rubber (SBR) composites. Journal of Composites Science, 5, 68, 2021. https://doi.org/10.3390/jcs5030068
  • H. Savran, Elastomer Teknolojisi–I. Acar Matbaacılık, İstanbul, 2001.
  • D. Dobrota, G. Dobrota and T. Dobrescu, Improvement of waste tyre recycling technology based on a new tyre markings. Journal of Cleaner Production, 2020, 121141. https://doi.org/10.1016/j.jclepro.2020.121141
  • ETRMA, The European tyre industry fast and figures 2020 edition, https://www.etrma.org/wp-content/uploads/2019/12/Figures-leaflet-updated-front-2019-larger-NEW-LABEL.pdf (Erişim tarihi: 08.01.2021).
  • B. S. Thomas and R. C. Gupta, A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 1323–1333, 2016. https://doi.org/10.1016/j.rser.2015.10.092
  • K. A. J. Dijkhuis, Recycling of vulcanized EPDM–rubber. Ph.D. Thesis, University of Twente, Enschede, Netherlands, 2008.
  • P. Sutanto, Development of a Continuous Process for EPDM Devulcanization in an Extruder, Doctoral Thesis, Rıjksuniversiteit Groningen, Jakarta, Indonesie, 2006
  • R. Marin, Evaluation of waste tire devulcanization technologies. CalRecovery Inc., California, 2004.
  • S. K. De, A. I. Isayev and K. Khait, Rubber Recycling, CRC Press, Taylor & Francis Group, Boca Raton, 2005. https://doi.org/10.1201/9780203499337
  • F. Karabörk ve A. Akdemir, Atık taşıt lastiklerinin parçalanması ve lastik tozunun karakterizasyonu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29, 1, 29-40, 2013.
  • A. Hejna, A. Olszewski, L. Zedler, P. Kosmela and K. Formela, The impact of ground tire rubber oxidation with H2O2 and KMnO4 on the structure and performance of flexible polyurethane/ground tire rubber composite foams. Materials, 14, 499, 2021. https://doi.org/10.3390/ma14030499
  • H. Liu, X. Wang and D. Jia, Recycling of waste rubber powder by mechano-chemical modification. Journal of Cleaner Production, 1-10, 2020. https://doi.org/10.1016/j.jclepro.2019.118716
  • A. Fazli and D. Rodrigue, Recycling waste tires into ground tire rubber (GTR)/rubber compounds: a review. Journal of Composite Science, 1-43, 2020. https://doi.org/10.3390/jcs4030103
  • X. Colom, F. Carrillo and J. Cañavate, Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Composites: Part A, 38, 44–50, 2007. https://doi.org/10.1016/j.compositesa.2006.01.022
  • A. A. Yehia, M. A. Mull, M. N. Ismail, Y. A. Hefny and E. M. Abdel-Bary, Effect of chemically modified waste rubber powder as a filler in natural rubber vulcanizates. Journal of Applied Polymer Science, 93, 30-36, 2004. https://doi.org/10.1002/app.20349
  • R. Sonnier, E. Leroy, L. Clerc, A. Bergeret and J. M. Lopez-Cuesta, Polyethylene/ground tyre rubber blends: influence of particle morphology and oxidation on mechanical properties. Polymer Testing 26, 274–281, 2007. https://doi.org/10.1016/j.polymertesting.2006.10.011
  • S. Guo, Q. Dai, R. Si, X. Sun and C. Lu, Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. Journal of Cleaner Production, 148, 681-689, 2017.
  • A. M. Shanmugharaj, J. K. Kim and S. H. Ryu, Modification of rubber powder with peroxide and properties of polypropylene/rubber. Composites Journal of Applied Polymer Science, 104, 2237–2243, 2007. https://doi.org/10.1002/app.25521
  • X. W. Cheng, D. Long, S. Huang, Z. Y. Li and X. Y. Guo, Time effectiveness of the low-temperature plasma surface modification of ground tire rubber powder. Journal of Adhesion Science and Technology, 29(13), 1330–1340, 2015. https://doi.org/10.1080/01694243.2015.1026958
  • Z. Andong, L. Xiaolin, Z. Guangyu and Z. Liqun, Preparation of liquid desulfurized rubber by co-rotating twin screw extruder. Synthetic Rubber Industry, 39(1), 2016. https://doi.org/10.3969/j.issn.1000-1255.2016.01.018
  • R. R. Tur, S. Pan, W. Shifeng, Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber. Construction and Building Materials, 182, 134-143, 2018. https://doi.org/10.1016/j.conbuildmat.2018.06.104
  • A. A. Berlin, T. V. Dudareva and I. A. Krasotkina, Tire-rubber-waste recycling and active powder of discretely devulcanized rubber. Polymer Science, Series D, 11 (3), 323-329, 2018. https://doi.org/10.1134/S1995421218030024
  • C. Jiang, Y. Zhanga, L. Mab, L. Zhouc and H. He, Tailoring the properties of ground tire rubber/high-density polyethylene blends by combining surface devulcanization and in-situ grafting technology. Materials Chemistry and Physics, 161-170, 2018. https://doi.org/10.1016/j.matchemphys.2018.08.040
  • R. Sonnier, E. Leroy, L. Clerc, A. Bergeret, J. M. Lopez-Cuesta, A. S. Bretelle and P. Ienny, Compatibilizing thermoplastic/ground tyre rubber powder blends: efficiency and limits. Polymer Testing, 27, 901–907, 2008. https://doi.org/10.1016/j.polymertesting.2008.07.003
  • M. Awang and H. Ismail, Preparation and characterization of polypropylene/waste tyre dust blends with addition of DCP and HVA-2 (PP/WTDP-HVA2). Polymer Testing, 27(3), 321–329, 2008. https://doi.org/10.1016/j.polymertesting.2007.12.001
  • A. Tolstov, O. Grigoryeva, A. Fainleib, I Danilenko, A. Spanoudaki, P. Pissis and J. Grenet, Reactive compatibilization of polyethylene/ground tire rubber inhomogeneous blends via interactions of pre-functionalized polymers in interface. Macromolecular Symposia, 254, 226–232, 2007. https://doi.org/10.1002/masy.200750834
  • A. I. Isayev, Recycling of Rubbers. Science and Technology of Rubber, Elsevier Inc., Third Edition, 663–701, Waltham, 2005.
  • L. E. Julian, Recycling of ground tyre rubber and polyolefin wastes by producing thermoplastic elastomers. Ph.D. Thesis, Kaiserslautern Technical University, Germany, 2005.
  • A. K. Naskar, S. K. De and A. K. Bhowmick, Characterization of ground rubber tyre and its effect on natural rubber compound. Rubber Chemistry and Technology, 73(5), 902–911, 2000. https://doi.org/10.5254/1.3547628
  • S. Li, J. Lamminmaki and K. Hanhi, Effect of ground rubber powder and devulcanizates on the properties of natural rubber compounds. Journal of Applied Polymer Science, 97, 208–217, 2005. https://doi.org/10.1002/app.21748
  • S. H. Lee, X. D. Zhang, D. Xu, D. Chung, G. J. Oh and J. K. Kim, Dynamic reaction involving surface modified waste ground rubber tire powder/polypropylene. Polymer Engineering and Science, 168-176, 2009. https://doi.org/10.1002/pen.21236
  • K. F. Abo Elenien, A. Abdel-Wahab, R. ElGamsy and M. H. Abdellatif, Assessment of the properties of PP composite with addition of recycled tire rubber. Ain Shams Engineering Journal, 9, 3271-3276, 2018. https://doi.org/10.1016/j.asej.2018.05.001
  • X. Zhang, X. Zhu, M. Liang and C. Lu, Improvement of the properties of ground tire rubber (GTR)-filled nitrile rubber vulcanizates through plasma surface modification of GTR powder. Wiley Periodicals Inc. Journal of Applied Polymer Science, 114, 1118-1125, 2009. https://doi.org/10.1002/app.30626
  • J. Cañavate, X. Colom, M. R. Saeb M, M. Przybysz, L. Zedler and K. Formela, Influence of microwave treatment conditions of GTR on physico-mechanical and structural properties of NBR/NR/GTR composites. Afinidad: revista de química teórica y aplicada, 76, 587, 171-179, 2019.
  • X. Colom, M. Marın-Genesca, R. Mujal, K. Formela K., and J. Canavate, Structural and physico-mechanical properties of natural rubber/GTR composites devulcanized by microwaves: Influence of GTR source and irradiation time. Journal of Composite Materials, 52(22), 3099–3108, 2018. https://doi.org/10.1177/0021998318761554
  • T. Yasin, S. Khan, M. Shafiq and R. Gill, Radiation crosslinking of styrene–butadiene rubber containing waste tire rubber and polyfunctional monomers. Radiation Physics and Chemistry, 106, 343-347, 2015. https://doi.org/10.1016/j.radphyschem.2014.08.017

Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi

Year 2024, Volume: 13 Issue: 1, 376 - 384, 15.01.2024
https://doi.org/10.28948/ngumuh.1314087

Abstract

Atık taşıt lastikleri malzemesi ve miktarı bakımından son derece değerli bir atık formudur. Atık lastiklerin geri kazanımında henüz sürdürülebilir ve verimli bir teknoloji geliştirilemediği için bu atığın değerlendirilmesi konusunda araştırmacılar çeşitli uygulamalara yönelmişlerdir. Bunlar arasında atık lastik tozlarının çeşitli malzeme bileşimlerine katılarak değerlendirilmesi önemli bir yer tutmaktadır. Bu uygulamalarda atık kauçuk tozunun katıldığı malzeme ile uyumunun kauçuğun yapısı gereği yeterince sağlanamadığı, bunun sonucunda malzeme özelliklerinin olumsuz etkilendiği görülmüştür. Kauçuk tozuna uygulanacak çeşitli yüzey işlemlerinin (yüzey modifikasyonu ve yüzey devulkanizasyonu) kauçuk tozu/matris uyumunu arttırdığına yönelik araştırmalar yoğun olarak sürdürülmektedir. Bu çalışmada, kauçuk tozuna uygulanan yüzey işlemleri detaylı olarak ele alınmış ve konuyla ilgili yapılan literatür çalışmaları incelenmiştir. Yapılan araştırmalar, kauçuk tozuna uygulanan yüzey işlemlerinin, tozun içine katıldığı malzeme ile uyumunu arttırdığını ortaya koymaktadır.

References

  • K. Formela, Sustainable development of waste tires recycling Technologies - recent advances, challenges and future trends. Advanced Industrial and Engineering Polymer Research, 4, 209-222, 2021. https://doi.org/10.1016/j.aiepr.2021.06.004.
  • E. Markl and M. Lackner, Devulcanization technologies for recycling of tire-derived rubber: a review, Materials, 13, 1246, 2020. http://dx.doi.org/10.3390/ma13051246
  • V. Lapkovskis, V. Mironovs, A. Kasperovich, V. Myadelets and D. Goljandin, Crumb rubber as a secondary raw material from waste rubber: a short review of end-of-life mechanical processing methods. Recycling, 5, 32, 2020. https://doi.org/10.3390/recycling5040032
  • B. Adhikari, D. De and S. Maiti, Reclamation and recycling of waste rubber. Progress in Polymer Science, 25, 909–948, 2000. https://doi.org/10.1016/S0079-6700(00)00020-4
  • J. Karger-Kocsis, L. Mészáros and T. Bárány, Ground tyre rubber (GTR) in thermoplastics, thermosets, and rubbers. Journal of Materials Science, 48, 1-38, 2013. https://doi.org/10.1007/s10853-012-6564-2
  • M. M. Phiri, M. J. Phiri, K. Formela and S. P. Hlangothi S. P., 2021. Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development - a review. Composites Part B, 204, 108429, 2021. https://doi.org/10.1016/j.compositesb.2020.108429
  • G. Lazorenko, A. Kasprzhitskii and V. Mischinenko, 2021. Rubberized geopolymer composites: Effect of filler surface treatment. Journal of Environmental Chemical Engineering, 9, 10560, 2021. https://doi.org/10.1016/j.jece.2021.105601
  • K. Klajn, T. Gozdek, D. M. Bielinski, M. Sicinski, M. Zarzecka-Napierała and Z. Pedzich, SBR vulcanizates filled with modified ground tire rubber. Materials, 14, 3991, 2021. https://doi.org/10.3390/ma14143991
  • J. Araujo-Morera, R. Verdugo-Manzanares, S. González, R. Verdejo, M. A. Lopez-Manchado and M. H. Santana, On the use of mechano-chemically modified ground tire rubber (GTR) as recycled and sustainable filler in styrene-butadiene rubber (SBR) composites. Journal of Composites Science, 5, 68, 2021. https://doi.org/10.3390/jcs5030068
  • H. Savran, Elastomer Teknolojisi–I. Acar Matbaacılık, İstanbul, 2001.
  • D. Dobrota, G. Dobrota and T. Dobrescu, Improvement of waste tyre recycling technology based on a new tyre markings. Journal of Cleaner Production, 2020, 121141. https://doi.org/10.1016/j.jclepro.2020.121141
  • ETRMA, The European tyre industry fast and figures 2020 edition, https://www.etrma.org/wp-content/uploads/2019/12/Figures-leaflet-updated-front-2019-larger-NEW-LABEL.pdf (Erişim tarihi: 08.01.2021).
  • B. S. Thomas and R. C. Gupta, A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 1323–1333, 2016. https://doi.org/10.1016/j.rser.2015.10.092
  • K. A. J. Dijkhuis, Recycling of vulcanized EPDM–rubber. Ph.D. Thesis, University of Twente, Enschede, Netherlands, 2008.
  • P. Sutanto, Development of a Continuous Process for EPDM Devulcanization in an Extruder, Doctoral Thesis, Rıjksuniversiteit Groningen, Jakarta, Indonesie, 2006
  • R. Marin, Evaluation of waste tire devulcanization technologies. CalRecovery Inc., California, 2004.
  • S. K. De, A. I. Isayev and K. Khait, Rubber Recycling, CRC Press, Taylor & Francis Group, Boca Raton, 2005. https://doi.org/10.1201/9780203499337
  • F. Karabörk ve A. Akdemir, Atık taşıt lastiklerinin parçalanması ve lastik tozunun karakterizasyonu. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29, 1, 29-40, 2013.
  • A. Hejna, A. Olszewski, L. Zedler, P. Kosmela and K. Formela, The impact of ground tire rubber oxidation with H2O2 and KMnO4 on the structure and performance of flexible polyurethane/ground tire rubber composite foams. Materials, 14, 499, 2021. https://doi.org/10.3390/ma14030499
  • H. Liu, X. Wang and D. Jia, Recycling of waste rubber powder by mechano-chemical modification. Journal of Cleaner Production, 1-10, 2020. https://doi.org/10.1016/j.jclepro.2019.118716
  • A. Fazli and D. Rodrigue, Recycling waste tires into ground tire rubber (GTR)/rubber compounds: a review. Journal of Composite Science, 1-43, 2020. https://doi.org/10.3390/jcs4030103
  • X. Colom, F. Carrillo and J. Cañavate, Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Composites: Part A, 38, 44–50, 2007. https://doi.org/10.1016/j.compositesa.2006.01.022
  • A. A. Yehia, M. A. Mull, M. N. Ismail, Y. A. Hefny and E. M. Abdel-Bary, Effect of chemically modified waste rubber powder as a filler in natural rubber vulcanizates. Journal of Applied Polymer Science, 93, 30-36, 2004. https://doi.org/10.1002/app.20349
  • R. Sonnier, E. Leroy, L. Clerc, A. Bergeret and J. M. Lopez-Cuesta, Polyethylene/ground tyre rubber blends: influence of particle morphology and oxidation on mechanical properties. Polymer Testing 26, 274–281, 2007. https://doi.org/10.1016/j.polymertesting.2006.10.011
  • S. Guo, Q. Dai, R. Si, X. Sun and C. Lu, Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. Journal of Cleaner Production, 148, 681-689, 2017.
  • A. M. Shanmugharaj, J. K. Kim and S. H. Ryu, Modification of rubber powder with peroxide and properties of polypropylene/rubber. Composites Journal of Applied Polymer Science, 104, 2237–2243, 2007. https://doi.org/10.1002/app.25521
  • X. W. Cheng, D. Long, S. Huang, Z. Y. Li and X. Y. Guo, Time effectiveness of the low-temperature plasma surface modification of ground tire rubber powder. Journal of Adhesion Science and Technology, 29(13), 1330–1340, 2015. https://doi.org/10.1080/01694243.2015.1026958
  • Z. Andong, L. Xiaolin, Z. Guangyu and Z. Liqun, Preparation of liquid desulfurized rubber by co-rotating twin screw extruder. Synthetic Rubber Industry, 39(1), 2016. https://doi.org/10.3969/j.issn.1000-1255.2016.01.018
  • R. R. Tur, S. Pan, W. Shifeng, Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber. Construction and Building Materials, 182, 134-143, 2018. https://doi.org/10.1016/j.conbuildmat.2018.06.104
  • A. A. Berlin, T. V. Dudareva and I. A. Krasotkina, Tire-rubber-waste recycling and active powder of discretely devulcanized rubber. Polymer Science, Series D, 11 (3), 323-329, 2018. https://doi.org/10.1134/S1995421218030024
  • C. Jiang, Y. Zhanga, L. Mab, L. Zhouc and H. He, Tailoring the properties of ground tire rubber/high-density polyethylene blends by combining surface devulcanization and in-situ grafting technology. Materials Chemistry and Physics, 161-170, 2018. https://doi.org/10.1016/j.matchemphys.2018.08.040
  • R. Sonnier, E. Leroy, L. Clerc, A. Bergeret, J. M. Lopez-Cuesta, A. S. Bretelle and P. Ienny, Compatibilizing thermoplastic/ground tyre rubber powder blends: efficiency and limits. Polymer Testing, 27, 901–907, 2008. https://doi.org/10.1016/j.polymertesting.2008.07.003
  • M. Awang and H. Ismail, Preparation and characterization of polypropylene/waste tyre dust blends with addition of DCP and HVA-2 (PP/WTDP-HVA2). Polymer Testing, 27(3), 321–329, 2008. https://doi.org/10.1016/j.polymertesting.2007.12.001
  • A. Tolstov, O. Grigoryeva, A. Fainleib, I Danilenko, A. Spanoudaki, P. Pissis and J. Grenet, Reactive compatibilization of polyethylene/ground tire rubber inhomogeneous blends via interactions of pre-functionalized polymers in interface. Macromolecular Symposia, 254, 226–232, 2007. https://doi.org/10.1002/masy.200750834
  • A. I. Isayev, Recycling of Rubbers. Science and Technology of Rubber, Elsevier Inc., Third Edition, 663–701, Waltham, 2005.
  • L. E. Julian, Recycling of ground tyre rubber and polyolefin wastes by producing thermoplastic elastomers. Ph.D. Thesis, Kaiserslautern Technical University, Germany, 2005.
  • A. K. Naskar, S. K. De and A. K. Bhowmick, Characterization of ground rubber tyre and its effect on natural rubber compound. Rubber Chemistry and Technology, 73(5), 902–911, 2000. https://doi.org/10.5254/1.3547628
  • S. Li, J. Lamminmaki and K. Hanhi, Effect of ground rubber powder and devulcanizates on the properties of natural rubber compounds. Journal of Applied Polymer Science, 97, 208–217, 2005. https://doi.org/10.1002/app.21748
  • S. H. Lee, X. D. Zhang, D. Xu, D. Chung, G. J. Oh and J. K. Kim, Dynamic reaction involving surface modified waste ground rubber tire powder/polypropylene. Polymer Engineering and Science, 168-176, 2009. https://doi.org/10.1002/pen.21236
  • K. F. Abo Elenien, A. Abdel-Wahab, R. ElGamsy and M. H. Abdellatif, Assessment of the properties of PP composite with addition of recycled tire rubber. Ain Shams Engineering Journal, 9, 3271-3276, 2018. https://doi.org/10.1016/j.asej.2018.05.001
  • X. Zhang, X. Zhu, M. Liang and C. Lu, Improvement of the properties of ground tire rubber (GTR)-filled nitrile rubber vulcanizates through plasma surface modification of GTR powder. Wiley Periodicals Inc. Journal of Applied Polymer Science, 114, 1118-1125, 2009. https://doi.org/10.1002/app.30626
  • J. Cañavate, X. Colom, M. R. Saeb M, M. Przybysz, L. Zedler and K. Formela, Influence of microwave treatment conditions of GTR on physico-mechanical and structural properties of NBR/NR/GTR composites. Afinidad: revista de química teórica y aplicada, 76, 587, 171-179, 2019.
  • X. Colom, M. Marın-Genesca, R. Mujal, K. Formela K., and J. Canavate, Structural and physico-mechanical properties of natural rubber/GTR composites devulcanized by microwaves: Influence of GTR source and irradiation time. Journal of Composite Materials, 52(22), 3099–3108, 2018. https://doi.org/10.1177/0021998318761554
  • T. Yasin, S. Khan, M. Shafiq and R. Gill, Radiation crosslinking of styrene–butadiene rubber containing waste tire rubber and polyfunctional monomers. Radiation Physics and Chemistry, 106, 343-347, 2015. https://doi.org/10.1016/j.radphyschem.2014.08.017
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other), Polymers and Plastics
Journal Section Review Articles
Authors

İlker Erzincanlı 0000-0002-7416-9963

Fazliye Karabörk 0000-0002-2304-7034

Early Pub Date November 15, 2023
Publication Date January 15, 2024
Submission Date June 13, 2023
Acceptance Date October 8, 2023
Published in Issue Year 2024 Volume: 13 Issue: 1

Cite

APA Erzincanlı, İ., & Karabörk, F. (2024). Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 376-384. https://doi.org/10.28948/ngumuh.1314087
AMA Erzincanlı İ, Karabörk F. Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi. NOHU J. Eng. Sci. January 2024;13(1):376-384. doi:10.28948/ngumuh.1314087
Chicago Erzincanlı, İlker, and Fazliye Karabörk. “Atık Lastik Tozuna Uygulanan yüzey işlemleri Ve atık Lastik Tozunun polimer/Orijinal kauçuk bileşimlerinde kullanımının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 1 (January 2024): 376-84. https://doi.org/10.28948/ngumuh.1314087.
EndNote Erzincanlı İ, Karabörk F (January 1, 2024) Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 1 376–384.
IEEE İ. Erzincanlı and F. Karabörk, “Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi”, NOHU J. Eng. Sci., vol. 13, no. 1, pp. 376–384, 2024, doi: 10.28948/ngumuh.1314087.
ISNAD Erzincanlı, İlker - Karabörk, Fazliye. “Atık Lastik Tozuna Uygulanan yüzey işlemleri Ve atık Lastik Tozunun polimer/Orijinal kauçuk bileşimlerinde kullanımının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/1 (January 2024), 376-384. https://doi.org/10.28948/ngumuh.1314087.
JAMA Erzincanlı İ, Karabörk F. Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi. NOHU J. Eng. Sci. 2024;13:376–384.
MLA Erzincanlı, İlker and Fazliye Karabörk. “Atık Lastik Tozuna Uygulanan yüzey işlemleri Ve atık Lastik Tozunun polimer/Orijinal kauçuk bileşimlerinde kullanımının Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 1, 2024, pp. 376-84, doi:10.28948/ngumuh.1314087.
Vancouver Erzincanlı İ, Karabörk F. Atık lastik tozuna uygulanan yüzey işlemleri ve atık lastik tozunun polimer/orijinal kauçuk bileşimlerinde kullanımının incelenmesi. NOHU J. Eng. Sci. 2024;13(1):376-84.

download