Research Article
BibTex RIS Cite

Investigating the results of relative GNSS services with the July 29, 2021 Mw 8.2 Chignik, Alaska Peninsula earthquake

Year 2024, Volume: 13 Issue: 2, 575 - 581, 15.04.2024
https://doi.org/10.28948/ngumuh.1387411

Abstract

In this study, we aimed to perform a statistical comparison of web-based relative positioning GNSS data processing services concerning coordinate values within the IGS network. To achieve this goal, we focused on the earthquake that struck Alaska on July 29, 2021, with a magnitude of Mw=8.2. We selected 8 IGS stations located in the Alaska-Aleut region, where the earthquake occurred. We used the AUSPOS and OPUS web-based GNSS data processing services to obtain 15-day time series, including the day of the earthquake. At stations near the earthquake's epicenter, we observed horizontal deformations of up to 40 cm and vertical deformations of 10 cm. The distribution of differences in the topocentric coordinate components obtained from both services predominantly centered around zero. However, the substantial differences were approximately 5 cm for the north-south component, 7 cm for the east-west component, and 2.5 cm for the height component. To assess the statistical significance of these differences, we conducted a statistical test. The test results indicate that the differences in the topocentric coordinate components obtained from web-based services are not statistically significant.

References

  • R. Ghoddousi-Fard and P. Dare, Online GPS processing services: An initial study. GPS Solutions, 10(1), 12-10, 2006. https://doi.org/10.1007/s10291-005-0147-5.
  • R. Ebner and W.E. Featherstone, How well can online GPS PPP post-processing services be used to establish geodetic survey control networks. Journal of Applied Geodesy, 2(3), 149–157, 2008. https://doi.org/ 10.1515/JAG.2008.017.
  • M. Tsakiri, GPS Processing Using Online Services. Journal of Surveying Engineering, 134(4), 115-125, 2008. https://doi.org/10.1061/(ASCE)0733-9453(2008)134:4(115)
  • A. El-Mowafy, Analysis of web-based GNSS post-processing services for static and kinematic positioning using short data spans. Survey Review, 43(322), 535–549, 2011. https://doi.org/10.1179/ 003962611X13117748892074
  • G. Wang and T. Soler, OPUS for Horizontal Subcentimeter-Accuracy Landslide Monitoring: Case Study in the Puerto Rico and Virgin Islands Region. Journal of Surveying Engineering, 138(3), 143–153, 2012. https://doi.org/10.1061/(asce)su.1943-5428.0000079.
  • T. Öcalan, B. Erdogan and N. Tunalioglu, Analysis of web-based online services for GPS relative and precise point positioning techniques. Boletim de ciencias geodesicas, 19(2), 191-207, 2013. https://doi.org/10.1590/S1982-21702013000200003.
  • A.I. El-Hattab, Assessment of PPP for establishment of CORS network for municipal surveying in Middle East. Survey Review, 46(335), 97–103, 2014. https://doi.org/10.1179/1752270613Y.0000000064.
  • K. Dawidowicz and G. Krzan, Coordinate estimation accuracy of static precise point positioning using on-line PPP service, a case study. Acta Geodaetica et Geophysica, 49(1), 37–55, 2014. https://doi.org/10.1007/s40328-013-0038-0.
  • Q. Guo, Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solutions, 19(4), 537–544, 2015. https://doi.org/10.1007/s10291-014-0413-5.
  • R.M. Alkan, V. Ilçi, I.M. Ozulu and M.H. Saka, A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas. Measurement, 69, 1–8, 2015. https://doi.org/10.1016/ jmeasurement.2015.03.012.
  • C.O. Yigit, M.Z. Coskun, H. Yavasoglu, A. Arslan and Y. Kalkan, The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study. Measurement, 91, 398–404, 2016.https://doi.org/10.1016/j.measurement.2016.05.074.
  • S. Alçay ve H.I. Imren, OPUS ve AUSPOS web-tabanli GPS değerlendirme servislerinin farklı gözlem süreleri için doğruluk performanslarının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 452-466, 2017.
  • M. Jamieson and D.T. Gillins, Comparative Analysis of Online Static GNSS Postprocessing Services. Journal of Surveying Engineering, 144(4), 2018. https://doi.org/10.1061/(asce)su.1943-5428.0000256
  • C. Aydin, S.Ö. Uygur, S. Çetin, A. Özdemir and U. Dogan, Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution. Survey Review, 51(366), 199–212, 2019. https://doi.org/ 10.1080/00396265.2017.1415664.
  • M. Şimşek, S. Özarpacı ve U. Doğan, Tektonik çalışmalarda web tabanlı online GNSS servislerinin performans analizi. Geomatik, 4(2), 147-159, 2019. https://doi.org/10.29128/geomatik.511758.
  • Ö. Gökdaş and M.T. Özlüdemir, Velocity estimation performance of GNSS online services (APPS and AUSPOS). Survey Review, 53(378), 280–288, 2021. https://doi.org/10.1080/00396265.2020.1809233.
  • C. İnal, B. Bilgen, S. Bülbül, ve M. Başbük, Farklı uydu sistemi kombinasyonlarının gerçek zamanlı hassas nokta konumlamaya etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 109-115, 2022.
  • Ö. Güneş and D.Ö. Demir, Comparing results of online GNSS services: A case study from Turkey. Survey Review, 54(383), 163–171, 2022. https://doi.org/10.1080/00396265.2021.1893470.
  • K. Gümüş, C.T. Çelik and M.G. Gümüş, A statistical investigation on the effects of different GNSS systems. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 432-442, 2023.
  • AUSPOS Online GPS Processing Service. https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos, Accessed 19 February 2023.
  • R. Dach, S. Lutz, P. Walser and P. Fridez, Bernese GNSS Software Version 5.2. User manual. Bern: Astronomical Institude, University of Bern, 2015. https://doi.org/10.7892/boris.72297.
  • OPUS: Online Positioning User Service. https://geodesy.noaa.gov/OPUS/about.jsp, Accessed 21 February 2023.
  • Pages: Program for Adjustment of GPS Ephemerides. https://geodesy.noaa.gov/GRD/GPS/DOC/pages/pages.html, Accessed 5 March 2023.
  • A.E. Niell, Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(2), 3227–3246, 1996. https://doi.org/10.1029/95jb03048.
  • USGS Earthquake Hazards Program. https://earthquake.usgs.gov/earthquakes/eventpage/ak0219neiszm/executive, Accessed 12 April 2023.
  • L. Ye, Y. Bai, D. Si, T. Lay, K.F. Cheung and H. Kanamori, Rupture Model for the 29 July 2021 MW 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations. Journal of Geophysical Research: Solid Earth, 127(7), 2022. https://doi.org/10.1029/2021JB023676.
  • C. Liu, T. Lay and X. Xiong, The 29 July 2021 MW 8.2 Chignik, Alaska Peninsula earthquake rupture inferred from seismic and geodetic observations: re-rupture of the western 2/3 of the 1938 rupture zone. Geophysical Research Letters, 49(4), 2022. https://doi.org/10.1029/2021GL096004.
  • R.E. Walpole, R.H. Myers, S.L. Myers and K. Ye, Probability and statistics for engineers and scientists. 9th ed., Pearson Education, USA, 2012.
  • F.E. Satterthwaite, An Approximate Distribution of Estimates of Variance Components. Biometrics bulletin, 2(6), 110-114, 1946. https://doi.org/ 10.2307/3002019.
  • K.R. Koch, Parameter estimation and hypothesis testing in linear models. Springer, Berlin, 1999.
  • P. Wessel and W.H. Smith, New, improved version of Generic Mapping Tools released. Eos, transactions American geophysical union, 79(47), 579-579, 1998. https://doi.org/10.1029/98EO00426.

29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi

Year 2024, Volume: 13 Issue: 2, 575 - 581, 15.04.2024
https://doi.org/10.28948/ngumuh.1387411

Abstract

Bu çalışmada internet tabanlı bağıl konumlama GNSS veri değerlendirme servislerinin kullanımının IGS ağında koordinat değerleri açısından istatistiksel olarak karşılaştırılması amaçlanmıştır. Bu amaçla, 29 Temmuz 2021’de Alaska’da Mw=8.2 büyüklüğünde gerçekleşen deprem ele alınmıştır. Depremin meydana geldiği Alaska-Aleut bölgesinde yer alan 8 IGS istasyonu seçilmiştir. Bu istasyonların deprem gününü de içeren 15 günlük zaman serileri AUSPOS ve OPUS internet tabanlı GNSS veri değerlendirme servislerinden elde edilen koordinatlar kullanılarak elde edilmiştir. Depremin gerçekleştiği noktaya yakın olan istasyonlarda yatayda 40 cm’ye; düşeyde ise 10 cm’ye varan deformasyon büyüklükleri elde edilmiştir. Her iki servisten elde edilen toposentrik koordinat bileşenlerindeki farkların dağılımı sıfır etrafında toplanırken; en büyük farklar kuzey-güney, doğu-batı ve yükseklik bileşenleri için sırasıyla yaklaşık 5 cm; 7 cm ve 2.5 cm’dir. Söz konusu bu farkların istatistiksel olarak anlamlı olup olmadığını belirlemek için istatistiksel test uygulanmıştır. Test sonucunda, internet tabanlı servislerden elde edilen toposentrik koordinat bileşenleri arasındaki farkların anlamsız olduğu bulunmuştur.

References

  • R. Ghoddousi-Fard and P. Dare, Online GPS processing services: An initial study. GPS Solutions, 10(1), 12-10, 2006. https://doi.org/10.1007/s10291-005-0147-5.
  • R. Ebner and W.E. Featherstone, How well can online GPS PPP post-processing services be used to establish geodetic survey control networks. Journal of Applied Geodesy, 2(3), 149–157, 2008. https://doi.org/ 10.1515/JAG.2008.017.
  • M. Tsakiri, GPS Processing Using Online Services. Journal of Surveying Engineering, 134(4), 115-125, 2008. https://doi.org/10.1061/(ASCE)0733-9453(2008)134:4(115)
  • A. El-Mowafy, Analysis of web-based GNSS post-processing services for static and kinematic positioning using short data spans. Survey Review, 43(322), 535–549, 2011. https://doi.org/10.1179/ 003962611X13117748892074
  • G. Wang and T. Soler, OPUS for Horizontal Subcentimeter-Accuracy Landslide Monitoring: Case Study in the Puerto Rico and Virgin Islands Region. Journal of Surveying Engineering, 138(3), 143–153, 2012. https://doi.org/10.1061/(asce)su.1943-5428.0000079.
  • T. Öcalan, B. Erdogan and N. Tunalioglu, Analysis of web-based online services for GPS relative and precise point positioning techniques. Boletim de ciencias geodesicas, 19(2), 191-207, 2013. https://doi.org/10.1590/S1982-21702013000200003.
  • A.I. El-Hattab, Assessment of PPP for establishment of CORS network for municipal surveying in Middle East. Survey Review, 46(335), 97–103, 2014. https://doi.org/10.1179/1752270613Y.0000000064.
  • K. Dawidowicz and G. Krzan, Coordinate estimation accuracy of static precise point positioning using on-line PPP service, a case study. Acta Geodaetica et Geophysica, 49(1), 37–55, 2014. https://doi.org/10.1007/s40328-013-0038-0.
  • Q. Guo, Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation. GPS Solutions, 19(4), 537–544, 2015. https://doi.org/10.1007/s10291-014-0413-5.
  • R.M. Alkan, V. Ilçi, I.M. Ozulu and M.H. Saka, A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas. Measurement, 69, 1–8, 2015. https://doi.org/10.1016/ jmeasurement.2015.03.012.
  • C.O. Yigit, M.Z. Coskun, H. Yavasoglu, A. Arslan and Y. Kalkan, The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study. Measurement, 91, 398–404, 2016.https://doi.org/10.1016/j.measurement.2016.05.074.
  • S. Alçay ve H.I. Imren, OPUS ve AUSPOS web-tabanli GPS değerlendirme servislerinin farklı gözlem süreleri için doğruluk performanslarının incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 452-466, 2017.
  • M. Jamieson and D.T. Gillins, Comparative Analysis of Online Static GNSS Postprocessing Services. Journal of Surveying Engineering, 144(4), 2018. https://doi.org/10.1061/(asce)su.1943-5428.0000256
  • C. Aydin, S.Ö. Uygur, S. Çetin, A. Özdemir and U. Dogan, Ability of GPS PPP in 2D deformation analysis with respect to GPS network solution. Survey Review, 51(366), 199–212, 2019. https://doi.org/ 10.1080/00396265.2017.1415664.
  • M. Şimşek, S. Özarpacı ve U. Doğan, Tektonik çalışmalarda web tabanlı online GNSS servislerinin performans analizi. Geomatik, 4(2), 147-159, 2019. https://doi.org/10.29128/geomatik.511758.
  • Ö. Gökdaş and M.T. Özlüdemir, Velocity estimation performance of GNSS online services (APPS and AUSPOS). Survey Review, 53(378), 280–288, 2021. https://doi.org/10.1080/00396265.2020.1809233.
  • C. İnal, B. Bilgen, S. Bülbül, ve M. Başbük, Farklı uydu sistemi kombinasyonlarının gerçek zamanlı hassas nokta konumlamaya etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(1), 109-115, 2022.
  • Ö. Güneş and D.Ö. Demir, Comparing results of online GNSS services: A case study from Turkey. Survey Review, 54(383), 163–171, 2022. https://doi.org/10.1080/00396265.2021.1893470.
  • K. Gümüş, C.T. Çelik and M.G. Gümüş, A statistical investigation on the effects of different GNSS systems. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(2), 432-442, 2023.
  • AUSPOS Online GPS Processing Service. https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos, Accessed 19 February 2023.
  • R. Dach, S. Lutz, P. Walser and P. Fridez, Bernese GNSS Software Version 5.2. User manual. Bern: Astronomical Institude, University of Bern, 2015. https://doi.org/10.7892/boris.72297.
  • OPUS: Online Positioning User Service. https://geodesy.noaa.gov/OPUS/about.jsp, Accessed 21 February 2023.
  • Pages: Program for Adjustment of GPS Ephemerides. https://geodesy.noaa.gov/GRD/GPS/DOC/pages/pages.html, Accessed 5 March 2023.
  • A.E. Niell, Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(2), 3227–3246, 1996. https://doi.org/10.1029/95jb03048.
  • USGS Earthquake Hazards Program. https://earthquake.usgs.gov/earthquakes/eventpage/ak0219neiszm/executive, Accessed 12 April 2023.
  • L. Ye, Y. Bai, D. Si, T. Lay, K.F. Cheung and H. Kanamori, Rupture Model for the 29 July 2021 MW 8.2 Chignik, Alaska earthquake constrained by seismic, geodetic, and tsunami observations. Journal of Geophysical Research: Solid Earth, 127(7), 2022. https://doi.org/10.1029/2021JB023676.
  • C. Liu, T. Lay and X. Xiong, The 29 July 2021 MW 8.2 Chignik, Alaska Peninsula earthquake rupture inferred from seismic and geodetic observations: re-rupture of the western 2/3 of the 1938 rupture zone. Geophysical Research Letters, 49(4), 2022. https://doi.org/10.1029/2021GL096004.
  • R.E. Walpole, R.H. Myers, S.L. Myers and K. Ye, Probability and statistics for engineers and scientists. 9th ed., Pearson Education, USA, 2012.
  • F.E. Satterthwaite, An Approximate Distribution of Estimates of Variance Components. Biometrics bulletin, 2(6), 110-114, 1946. https://doi.org/ 10.2307/3002019.
  • K.R. Koch, Parameter estimation and hypothesis testing in linear models. Springer, Berlin, 1999.
  • P. Wessel and W.H. Smith, New, improved version of Generic Mapping Tools released. Eos, transactions American geophysical union, 79(47), 579-579, 1998. https://doi.org/10.1029/98EO00426.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Navigation and Position Fixing, Satellite-Based Positioning, Geomatic Engineering (Other)
Journal Section Research Articles
Authors

Deniz Öz Demir 0000-0003-3927-6912

Özge Güneş 0000-0001-7576-621X

Early Pub Date February 23, 2024
Publication Date April 15, 2024
Submission Date November 7, 2023
Acceptance Date February 6, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Demir, D. Ö., & Güneş, Ö. (2024). 29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 575-581. https://doi.org/10.28948/ngumuh.1387411
AMA Demir DÖ, Güneş Ö. 29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi. NOHU J. Eng. Sci. April 2024;13(2):575-581. doi:10.28948/ngumuh.1387411
Chicago Demir, Deniz Öz, and Özge Güneş. “29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula Depremi deformasyonlarının bağıl Konum Belirleme Servis sonuçları Ile Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 2 (April 2024): 575-81. https://doi.org/10.28948/ngumuh.1387411.
EndNote Demir DÖ, Güneş Ö (April 1, 2024) 29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 575–581.
IEEE D. Ö. Demir and Ö. Güneş, “29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi”, NOHU J. Eng. Sci., vol. 13, no. 2, pp. 575–581, 2024, doi: 10.28948/ngumuh.1387411.
ISNAD Demir, Deniz Öz - Güneş, Özge. “29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula Depremi deformasyonlarının bağıl Konum Belirleme Servis sonuçları Ile Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (April 2024), 575-581. https://doi.org/10.28948/ngumuh.1387411.
JAMA Demir DÖ, Güneş Ö. 29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi. NOHU J. Eng. Sci. 2024;13:575–581.
MLA Demir, Deniz Öz and Özge Güneş. “29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula Depremi deformasyonlarının bağıl Konum Belirleme Servis sonuçları Ile Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 2, 2024, pp. 575-81, doi:10.28948/ngumuh.1387411.
Vancouver Demir DÖ, Güneş Ö. 29 Temmuz 2021 Mw=8.2 Chignik, Alaska Peninsula depremi deformasyonlarının bağıl konum belirleme servis sonuçları ile incelenmesi. NOHU J. Eng. Sci. 2024;13(2):575-81.

download