Research Article
BibTex RIS Cite

Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu

Year 2024, Volume: 13 Issue: 2, 600 - 610, 15.04.2024
https://doi.org/10.28948/ngumuh.1396674

Abstract

Çinko atıkları çinko üretimi için ekonomik değere sahip bir kaynaktır. Ancak, aynı zamanda içerdiği ağır metaller nedeniyle tehlikeli atık olarak da sınıflandırılırlar. Bu çalışmada sülfatlayıcı kavurma ve su liçi koşullarının metal çözünürlüğüne (Zn, Pb, Fe ve Ca) etkisi araştırılmıştır. Çeşitli sıcaklarda ve sürelerde amonyum sülfatla yapılan kavurma testleri sonrasında, kavrulmuş her bir numunenin mineralojik yapısı incelenmiştir. Kimyasal analiz sonuçlarına göre atığın %16.6 Pb, %12.5 Zn ve %7.5 Fe içerdiği tespit edilmiştir. Amonyum sülfatla ile kavurma işlemi sonunda, atığın sahip olduğu ZnFe2O4 ve Zn2SiO4 yapılarının çinko sülfata (ZnSO4) dönüştüğü saptanmıştır. Proses ekonomisi ve enerji tasarrufu göz önüne alınarak, yaklaşık %91 oranında çinko geri kazanımı için optimum çalışma şartı, 1:2 (g:g) oranında atık/amonyum sülfat oranı, 625 ºC kavurma sıcaklığı, 4 saat kavurma süresi, 25 ºC liç sıcaklığı ve 2 saat liç süresi olarak belirlenmiştir. Bu şartlar altında kurşunun çözünmediği, kalsiyum ve demirin çözünme oranları sırasıyla %41.2 ve %16.8 olduğu tespit edilmiştir.

References

  • B. Sun, J. Dai, K. Huang, C. Yang and W. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspective, International Journal of Minerals, Metallurgy and Materials, 29(4), 611-625, 2022. https://doi.org/10.1007/s12613-022-2448-x.
  • A. J. Whitworth, J. Vaughan, G. Southam, A. van der Ent, P.N. Nkrumah, X. Ma and A. Parbhakar-Fox, Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes, Minerals Engineering, 182, 107537, 2022. https://doi.org/10.1016/j.mineng.2022.107537.
  • B. K. C. Chan, S. Bouzalakos and A. W. L. Dudeney, Integrated waste and water management in mining and metallurgical industries, Transactions of Nonferrous Metals Society of China, 18(6), 1497-1505, 2008. https://doi.org/10.1016/S1003-6326(09)60032-7.
  • M. E. Schlesinger, K. C. Sole, W. G. Davenport and G. R. F. A. Flores, Extractive Metallurgy of copper, Elsevier, Cambridge, 2021.
  • M. S. Alkan, A. Rüşen and M. A. Topçu, Recovery of lead and zinc from complex industrial waste of zinc process with ammonium acetate, JOM, 75, 1158-1168, 2023. https:// doi.org/10.1007/s11837-022-05692-4.
  • A. Rüşen, A. S. Sunkar and Y. A. Topkaya, Zinc and lead Extraction from Çinkur leach residues by using hydrometallurgical method. Hydrometallurgy, 93(1), 45-50, 2008. https://doi.org/10.1016/j.hydromet.2008.02.018.
  • J. Fellner, J. Lederer, A. Purgar, A. Winterstetter, H. Rechberger, F. Winter and D. Laner, Evaulation of resource recovery from waste incineration residues – The case of zinc, Waste Management, 37, 95-103, 2015. https://doi.org/10.1016/j.wasman.2014.10.010.
  • K. S. Ng, I. Head, G. C. Premier, K. Scott, E. Yu, J. Lloyd and J. Sadhukhan, A multilevel sustainability analysis of zinc recovery from wastes, Resources, Conservation and Recycling, 113, 88-105, 2016. https://doi.org/10.1016/j.resconrec.2016.05.013.
  • M. K. Jha, V. Kumar and R. J. Singh, Recovery of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33(1), 1-22, 2001. https://doi.org/10.1016/S0921-3449(00)00095-1.
  • L. Tang, C. Tang, J. Xiao, P. Zeng and M. Tang, A Cleaner process for valuable metals recovery from hydrometallurgical zinc residue, Journal of Cleaner Production, 201, 764-773, 2018. https://doi.org/10.1016/j.jclepro.2018.08.096.
  • W. Xin, C. Srinivasakannan, D. Xin-Hui, P. Jin-Hui, Y. Da-Jin and J. Shao-Hua, Leaching kinetics of zinc residues augmented with ultrasound, Separation and Purification Technology, 115, 66-72, 2013. https://doi.org/10.1016/j.seppur.2013.04.043.
  • P. Xing, B. Ma, P. Zeng, C. Wang, L. Wang, Y. Zhang, Y. Chen, S. Wang and Q. Wang, Deep Cleaning of a Metallurgical leaching residue and recovery of valuable metals, International Journal of Minerals, Metallurgy, and Materials, 24(11), 1217-1227, 2017. https:// doi.org/10.1007/s12613-017-1514-2.
  • E. A. Ajiboye, P. K. Panda, A. O. Adebayo, O. O. Ajayi, B.C. Tripathy, M. K. Ghosh and S. Basu, Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid, Hydrometallurgy 188 (2019) 161–168. https://doi.org/10.1016/j.hydromet.2019.06.016.
  • E. Güler, Çinko tesisi liç artıklarından metal kazanım yöntemlerinin araştırılması. Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 2008.
  • Y. Zhang, X. Yu and X. Li, Zinc recovery from franklinite by sulphation roasting, Hydrometallurgy, 109(3), 211-214, 2011. https://doi.org/10.1016/j.hydromet.2011.07.002
  • M.A. Topçu, A. Rüşen and Ö. Küçük, Treatment of copper converter slag with deep eutectic solvent as green Chemical, Waste Management, 132, 64-73, 2021. https://doi.org/10.1016/j.wasman.2021.07.022.
  • A. Kilicarslan, M.N. Saridede, S. Stopic, and B. Friedrich, Use of ionic liquid in leaching process of brass waste for copper and zinc recovery, International Journal of Minerals, Metallurgy, and Materials, 21(2), 138-143. 2014. https://doi.org/10.1007/s12613-014-0876-y
  • J. Chang, J. Peng, L. Zhang and J. Chen, Drying, roasting, and calcining of minerals, Springer International Publishing, Cham, 2016.
  • J. Song, C. Peng, Y. Liang, D. Zhang, Z. Lin, Y. Liao, and G. Wang, Efficient extracting germanium and gallium from zinc residue by sulfuric and tartaric complex acid. Hydrometallurgy, 202, 105599, 2021. https://doi.org/10.1016/j.hydromet.2021.105599.
  • T. Xiao, W. Mu, S. Shi, H. Xin, X. Xu, H. Cheng, S. Luoa and Y. Zhai, Simultaneous Extraction of nickel, copper, and cobalt from low-grade nickel matte by oxidative sulfation roasting-water leaching process, Minerals Engineering, 174, 107254, 2021. https://doi.org/10.1016/j.mineng.2021.107254.
  • Y. Li, H. Liu, B. Peng, X. Min, M. Hu, N. Peng, Y. Yuang and J. Lei, Study on separating of zinc and iron from zinc leaching residues by Roasting with ammonium sulphate, Hydrometallurgy, 158, 42-48, 2015. https://doi.org/10.1016/j.hydromet.2015.10.004.
  • C.A. Pickles and O. Marzoughi, Thermodynamic investigation of the sulphation Roasting of electric arc furnace dust, Minerals, 9(1), 18, 2018. https://doi.org/10.3390/min9010018.
  • R. Wang, Y. Yang, C. Liu, J. Zhou, Z. Fang, K. Yan, L. Tian and Z. Xu, Recovery of lead and silver from zinc acid-leaching residue via a sulfation roasting and oxygen-rich chlorination leaching method, Journal of Central South University, 27(12), 3567-3580, 2020. https://doi.org/10.1007/s11771-020-4569-6.
  • P. Masset, J. Poinso and J. Poignet, TG/DTA/MS study of the thermal decomposition of FeSO4.6H2O, Journal of Thermal Analysis and Calorimetry, 83(2), 457 – 462, 2006. https://doi.org/10.1007/s10973-005-7267-6
  • M. A. Topçu, Anot çamuru liç solüsyonlarından metal geri kazanımı ve uygulamaları. Doktora Tezi, Konya Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • H. Xie, X. Xiao, Z. Guo and S. Li, One-stage ultrasonic-assisted calcium chloride leaching of lead from zinc leaching residue, Chemical Engineering and Processing - Process Intensification, 176, 108941, 2022. https://doi.org/10.1016/j.cep.2022.108941.
  • A. U. Rehman, M. Z. Shah, A. Ali, T. Zhao, R. Shah, I. Ullah, H. Bilal, A.R. Khan, M. Iqbal, A. Hayat and M. Zheng, Thermochemical heat storage ability of ZnSO4.7H2O as potential long-term heat strorage material, International Journal of Energy Research, 45(3), 4746 – 4754, 2021. https://doi.org/10.1002/er.6077.
  • G. V. T. Kurban, A. S. C. Rego, N. M. Mello, E. A. Brocchi, R. C. S. Navarro, R. F. M. Souza, Thermodynamics and kinetics modelling of the ZnSO4.7H2O thermal decomposition in the presence of a Pd/Al2O3 catalyst, Energies, 15(2), 548, 2022. https://doi.org/10.3390/en15020548.
  • J. Straszko, M. Olszak-Humienik and J. Możejko, Kinetics of thermal decomposition of ZnSO4.7H2O, Thermochimica Acta 292(1), 145-150, 1997. https://doi.org/10.1016/S0040-6031(96)03114-0.
  • H. Han, W. Sun, Y. Hu, B. Jia and H. Tang, Journal of Hazardous Materials, Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallugy, 278, 49-54, 2014. https://doi.org/10.1016/j.jhazmat.2014.05.091.
  • M. R. C. Ismael and J. M. R. Carvalho, Iron recovery from sulphate leach liquors in zinc hydrometallurgy Minerals Engineering, 16(1), 31-39, 2003. https://doi.org/10.1016/S0892-6875(02)00310-2.
  • L. Hoeber and S. Steinlechner, A comprehensive review of processing strategies for iron precipitation residues from zinc Hydrometallurgy, Cleaner Engineering and Technology, 4, 100214, 2021. https://doi.org/10.1016/j.clet.2021.100214.
  • E. Rudnik, Recovery of zinc from zinc ash by leaching in sulphuric acid and electrowinnnig, Hydrometallurgy 188, 256-263, 2019. https://doi.org/10.1016/j.hydromet.2019.07.006.

Optimization of sulfation roasting and water leaching for zinc recovery from zinc waste

Year 2024, Volume: 13 Issue: 2, 600 - 610, 15.04.2024
https://doi.org/10.28948/ngumuh.1396674

Abstract

Zinc wastes are economically valuable resource for zinc production. However, they are also classified as hazardous waste due to the heavy metal they contain. In this study, the effect of sulphating roasting and water leaching conditions on metal solubility (Zn, Pb, Fe, and Ca) were investigated. After roasting tests with ammonium sulfate at various temperatures and durations, the mineralogical structure of each roasted sample was examined. According to the chemical analysis, it was determined that the waste contained 16.6% Pb, 12.5% Zn, and 7.5% Fe. It was determined that roasting the waste with ammonium sulfate transforms the ZnFe2O4 ve Zn2SiO4 structures of the waste into zinc sulfate (ZnSO4). Considering the process economy and energy savings, the optimum operating conditions for approximately 91% zinc recovery was determined as 1:2 (g:g) waste/ammonium sulfate ratio, 625 ºC roasting temperature, 4 hours roasting time, 625 ºC leaching temperature, and 2 hours leaching time. Also, under the optimum conditions it was found that lead did not dissolve, and the dissolution rates of calcium and iron were 41% and 16.8%, respectively.

References

  • B. Sun, J. Dai, K. Huang, C. Yang and W. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspective, International Journal of Minerals, Metallurgy and Materials, 29(4), 611-625, 2022. https://doi.org/10.1007/s12613-022-2448-x.
  • A. J. Whitworth, J. Vaughan, G. Southam, A. van der Ent, P.N. Nkrumah, X. Ma and A. Parbhakar-Fox, Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes, Minerals Engineering, 182, 107537, 2022. https://doi.org/10.1016/j.mineng.2022.107537.
  • B. K. C. Chan, S. Bouzalakos and A. W. L. Dudeney, Integrated waste and water management in mining and metallurgical industries, Transactions of Nonferrous Metals Society of China, 18(6), 1497-1505, 2008. https://doi.org/10.1016/S1003-6326(09)60032-7.
  • M. E. Schlesinger, K. C. Sole, W. G. Davenport and G. R. F. A. Flores, Extractive Metallurgy of copper, Elsevier, Cambridge, 2021.
  • M. S. Alkan, A. Rüşen and M. A. Topçu, Recovery of lead and zinc from complex industrial waste of zinc process with ammonium acetate, JOM, 75, 1158-1168, 2023. https:// doi.org/10.1007/s11837-022-05692-4.
  • A. Rüşen, A. S. Sunkar and Y. A. Topkaya, Zinc and lead Extraction from Çinkur leach residues by using hydrometallurgical method. Hydrometallurgy, 93(1), 45-50, 2008. https://doi.org/10.1016/j.hydromet.2008.02.018.
  • J. Fellner, J. Lederer, A. Purgar, A. Winterstetter, H. Rechberger, F. Winter and D. Laner, Evaulation of resource recovery from waste incineration residues – The case of zinc, Waste Management, 37, 95-103, 2015. https://doi.org/10.1016/j.wasman.2014.10.010.
  • K. S. Ng, I. Head, G. C. Premier, K. Scott, E. Yu, J. Lloyd and J. Sadhukhan, A multilevel sustainability analysis of zinc recovery from wastes, Resources, Conservation and Recycling, 113, 88-105, 2016. https://doi.org/10.1016/j.resconrec.2016.05.013.
  • M. K. Jha, V. Kumar and R. J. Singh, Recovery of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33(1), 1-22, 2001. https://doi.org/10.1016/S0921-3449(00)00095-1.
  • L. Tang, C. Tang, J. Xiao, P. Zeng and M. Tang, A Cleaner process for valuable metals recovery from hydrometallurgical zinc residue, Journal of Cleaner Production, 201, 764-773, 2018. https://doi.org/10.1016/j.jclepro.2018.08.096.
  • W. Xin, C. Srinivasakannan, D. Xin-Hui, P. Jin-Hui, Y. Da-Jin and J. Shao-Hua, Leaching kinetics of zinc residues augmented with ultrasound, Separation and Purification Technology, 115, 66-72, 2013. https://doi.org/10.1016/j.seppur.2013.04.043.
  • P. Xing, B. Ma, P. Zeng, C. Wang, L. Wang, Y. Zhang, Y. Chen, S. Wang and Q. Wang, Deep Cleaning of a Metallurgical leaching residue and recovery of valuable metals, International Journal of Minerals, Metallurgy, and Materials, 24(11), 1217-1227, 2017. https:// doi.org/10.1007/s12613-017-1514-2.
  • E. A. Ajiboye, P. K. Panda, A. O. Adebayo, O. O. Ajayi, B.C. Tripathy, M. K. Ghosh and S. Basu, Leaching kinetics of Cu, Ni and Zn from waste silica rich integrated circuits using mild nitric acid, Hydrometallurgy 188 (2019) 161–168. https://doi.org/10.1016/j.hydromet.2019.06.016.
  • E. Güler, Çinko tesisi liç artıklarından metal kazanım yöntemlerinin araştırılması. Doktora Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 2008.
  • Y. Zhang, X. Yu and X. Li, Zinc recovery from franklinite by sulphation roasting, Hydrometallurgy, 109(3), 211-214, 2011. https://doi.org/10.1016/j.hydromet.2011.07.002
  • M.A. Topçu, A. Rüşen and Ö. Küçük, Treatment of copper converter slag with deep eutectic solvent as green Chemical, Waste Management, 132, 64-73, 2021. https://doi.org/10.1016/j.wasman.2021.07.022.
  • A. Kilicarslan, M.N. Saridede, S. Stopic, and B. Friedrich, Use of ionic liquid in leaching process of brass waste for copper and zinc recovery, International Journal of Minerals, Metallurgy, and Materials, 21(2), 138-143. 2014. https://doi.org/10.1007/s12613-014-0876-y
  • J. Chang, J. Peng, L. Zhang and J. Chen, Drying, roasting, and calcining of minerals, Springer International Publishing, Cham, 2016.
  • J. Song, C. Peng, Y. Liang, D. Zhang, Z. Lin, Y. Liao, and G. Wang, Efficient extracting germanium and gallium from zinc residue by sulfuric and tartaric complex acid. Hydrometallurgy, 202, 105599, 2021. https://doi.org/10.1016/j.hydromet.2021.105599.
  • T. Xiao, W. Mu, S. Shi, H. Xin, X. Xu, H. Cheng, S. Luoa and Y. Zhai, Simultaneous Extraction of nickel, copper, and cobalt from low-grade nickel matte by oxidative sulfation roasting-water leaching process, Minerals Engineering, 174, 107254, 2021. https://doi.org/10.1016/j.mineng.2021.107254.
  • Y. Li, H. Liu, B. Peng, X. Min, M. Hu, N. Peng, Y. Yuang and J. Lei, Study on separating of zinc and iron from zinc leaching residues by Roasting with ammonium sulphate, Hydrometallurgy, 158, 42-48, 2015. https://doi.org/10.1016/j.hydromet.2015.10.004.
  • C.A. Pickles and O. Marzoughi, Thermodynamic investigation of the sulphation Roasting of electric arc furnace dust, Minerals, 9(1), 18, 2018. https://doi.org/10.3390/min9010018.
  • R. Wang, Y. Yang, C. Liu, J. Zhou, Z. Fang, K. Yan, L. Tian and Z. Xu, Recovery of lead and silver from zinc acid-leaching residue via a sulfation roasting and oxygen-rich chlorination leaching method, Journal of Central South University, 27(12), 3567-3580, 2020. https://doi.org/10.1007/s11771-020-4569-6.
  • P. Masset, J. Poinso and J. Poignet, TG/DTA/MS study of the thermal decomposition of FeSO4.6H2O, Journal of Thermal Analysis and Calorimetry, 83(2), 457 – 462, 2006. https://doi.org/10.1007/s10973-005-7267-6
  • M. A. Topçu, Anot çamuru liç solüsyonlarından metal geri kazanımı ve uygulamaları. Doktora Tezi, Konya Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye, 2021.
  • H. Xie, X. Xiao, Z. Guo and S. Li, One-stage ultrasonic-assisted calcium chloride leaching of lead from zinc leaching residue, Chemical Engineering and Processing - Process Intensification, 176, 108941, 2022. https://doi.org/10.1016/j.cep.2022.108941.
  • A. U. Rehman, M. Z. Shah, A. Ali, T. Zhao, R. Shah, I. Ullah, H. Bilal, A.R. Khan, M. Iqbal, A. Hayat and M. Zheng, Thermochemical heat storage ability of ZnSO4.7H2O as potential long-term heat strorage material, International Journal of Energy Research, 45(3), 4746 – 4754, 2021. https://doi.org/10.1002/er.6077.
  • G. V. T. Kurban, A. S. C. Rego, N. M. Mello, E. A. Brocchi, R. C. S. Navarro, R. F. M. Souza, Thermodynamics and kinetics modelling of the ZnSO4.7H2O thermal decomposition in the presence of a Pd/Al2O3 catalyst, Energies, 15(2), 548, 2022. https://doi.org/10.3390/en15020548.
  • J. Straszko, M. Olszak-Humienik and J. Możejko, Kinetics of thermal decomposition of ZnSO4.7H2O, Thermochimica Acta 292(1), 145-150, 1997. https://doi.org/10.1016/S0040-6031(96)03114-0.
  • H. Han, W. Sun, Y. Hu, B. Jia and H. Tang, Journal of Hazardous Materials, Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallugy, 278, 49-54, 2014. https://doi.org/10.1016/j.jhazmat.2014.05.091.
  • M. R. C. Ismael and J. M. R. Carvalho, Iron recovery from sulphate leach liquors in zinc hydrometallurgy Minerals Engineering, 16(1), 31-39, 2003. https://doi.org/10.1016/S0892-6875(02)00310-2.
  • L. Hoeber and S. Steinlechner, A comprehensive review of processing strategies for iron precipitation residues from zinc Hydrometallurgy, Cleaner Engineering and Technology, 4, 100214, 2021. https://doi.org/10.1016/j.clet.2021.100214.
  • E. Rudnik, Recovery of zinc from zinc ash by leaching in sulphuric acid and electrowinnnig, Hydrometallurgy 188, 256-263, 2019. https://doi.org/10.1016/j.hydromet.2019.07.006.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing Metallurgy
Journal Section Research Articles
Authors

Mehmet Ali Topçu 0000-0002-0007-5665

Early Pub Date February 29, 2024
Publication Date April 15, 2024
Submission Date November 27, 2023
Acceptance Date February 15, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Topçu, M. A. (2024). Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 600-610. https://doi.org/10.28948/ngumuh.1396674
AMA Topçu MA. Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu. NOHU J. Eng. Sci. April 2024;13(2):600-610. doi:10.28948/ngumuh.1396674
Chicago Topçu, Mehmet Ali. “Çinko atıklarından çinko Geri kazanımı için sülfatlayıcı Kavurma Ve Su liçi Optimizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 2 (April 2024): 600-610. https://doi.org/10.28948/ngumuh.1396674.
EndNote Topçu MA (April 1, 2024) Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 600–610.
IEEE M. A. Topçu, “Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu”, NOHU J. Eng. Sci., vol. 13, no. 2, pp. 600–610, 2024, doi: 10.28948/ngumuh.1396674.
ISNAD Topçu, Mehmet Ali. “Çinko atıklarından çinko Geri kazanımı için sülfatlayıcı Kavurma Ve Su liçi Optimizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (April 2024), 600-610. https://doi.org/10.28948/ngumuh.1396674.
JAMA Topçu MA. Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu. NOHU J. Eng. Sci. 2024;13:600–610.
MLA Topçu, Mehmet Ali. “Çinko atıklarından çinko Geri kazanımı için sülfatlayıcı Kavurma Ve Su liçi Optimizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 2, 2024, pp. 600-1, doi:10.28948/ngumuh.1396674.
Vancouver Topçu MA. Çinko atıklarından çinko geri kazanımı için sülfatlayıcı kavurma ve su liçi optimizasyonu. NOHU J. Eng. Sci. 2024;13(2):600-1.

download