Nanoakışkan çalışmalarında sonuçların deneysel çalışmalara bağlı olması, son yıllarda yapay zeka tabanlı modelleme çalışmaları ile aşılmaya çalışılmaktadır. Yapılan modelleme çalışmalarında nanoakışkanların temel termal özellikleri olan ısıl iletkenlik ve viskozite üzerine yoğunlaşılmış ve nanoakışkanlar için gerekli olan en önemli özelliklerden olan stabilitenin çoğu zaman ihmal edildiği görülmektedir. Bu çalışmada TiO2 nanoakışkanı için deneysel olarak ortaya konmuş veriler kullanılarak ısıl iletkenlik ve viskozite değerleri YSA ile modellenmiştir. YSA modelinin performans ölçütleri olan MSE, R değerleri sırasıyla 4,2484E-06 ve 0.99982’dir. Ağ sonuçlarında sıcaklık, kütlesel oran ve stabiliteyi doğrudan etkileyen pH değerine bağlı olarak bir model geliştirilmiştir. Model sonuçları kullanılarak ısıl iletkenlik ve viskozite özellikleri için sıcaklık, kütlesel oran ve pH değişkenlerine bağlı olarak korelasyonlar geliştirilmiştir. Ortaya konulan korelasyonların ısıl iletkenlik için deneysel değerlerden sapma oranları ± % 3,5 aralığında iken viskozite için bu oran ± % 9 aralığın elde edilmiştir.
In recent years, artificial intelligence-based modeling studies have been attempted to overcome the reliance on experimental results in nanofluid research. These modeling studies have mainly focused on the fundamental thermal properties of nanofluids, namely thermal conductivity and viscosity, while stability, which is one of the most important properties for nanofluids, has often been neglected. In this study, experimental data for TiO2 nanofluid has been utilized to model thermal conductivity and viscosity values using Artificial Neural Networks (ANNs). The performance metrics of the ANN model, MSE (Mean Squared Error), and R (Correlation Coefficient), are 4,2484E-06 and 0,99982, respectively. Using the model results, correlations have been established temperature, mass ratio, and pH variables for the thermal conductivity and viscosity properties of nanofluids. The deviation rates of the proposed correlations from the experimental values are within the range of ± 3,5% for thermal conductivity and ± 9% for viscosity.
Primary Language | Turkish |
---|---|
Subjects | Mechanical Engineering (Other) |
Journal Section | Research Articles |
Authors | |
Early Pub Date | June 11, 2024 |
Publication Date | July 15, 2024 |
Submission Date | March 20, 2024 |
Acceptance Date | May 23, 2024 |
Published in Issue | Year 2024 Volume: 13 Issue: 3 |