Research Article
BibTex RIS Cite

Sonikasyon işleminin grafen oksit yapısal özellikleri üzerindeki etkisinin değerlendirilmesi

Year 2024, Volume: 13 Issue: 4, 1 - 1
https://doi.org/10.28948/ngumuh.1470478

Abstract

Karbon bazlı nanomalzemelerin üyelerinden biri olan grafen oksit (GO), basitçe çeşitli oksijen içerikli fonksiyonel gruplarca dekore edilmiş grafen yapısı olarak da tanımlanabilmektedir. Hummers yöntemi, uygulama kolaylığı, parametre kontrol edilebilirliği ve yüksek verimi nedeniyle GO nanomalzemelerinin üretimi için en sık kullanılan, çok yönlü yöntemlerden biridir. Bu yöntem, başlangıç malzemesi olan grafitin oksidasyonunu ve tek veya birkaç katmanlı GO tabakaları şeklinde katmanlara ayrılmasına imkân vermektedir. Eksfoliasyon, çok katmanlı grafit oksit tabakalarının veya parçacıklarının birbirinden ayrılması, oksitleyici ajanların veya solvent moleküllerinin bu katmanlar arasına girmesi sürecidir. Sonikasyon işlemi ise oksitlenmiş katmanları birbirinden ayırarak yalnızca bir veya birkaç karbon atomundan meydana gelen tek katmanlı GO yapısının oluşmasını sağlamaktadır. Bu proses GO bazlı nanomalzemelerin özelliklerini etkileyen Hummers yönteminin temel parametreleri arasında yer almaktadır. Bu çalışmada sonikasyon işlem süresi ve güç parametrelerinin GO nanomalzemlerin morfolojik ve yapısal özelliklerine etkisi incelenmiştir. Bu amaçla taramalı elektron mikroskobu (SEM), X-ışını kırınımı (XRD), Fourier-transform kızılötesi spektroskopisi (FTIR), UV-Vis spektroskopisi ve Raman spektroskopisi analizi kullanılarak karakterizasyon çalışmaları yapılmıştır. Uygulanan sonikasyon gücü ve süresindeki artışın katmanlar arası mesafenin azalmasına ve elde edilen GO yapısında kusurların artmasına neden olduğu tespit edilmiştir. Bulgular, en düşük güç ve en kısa sonikasyon süresine tabii tutulan numunenin, 7,83Å ile en yüksek katmanlar arası mesafe değerine ve 1,62 ile en düşük C/O oranına sahip olduğunu ortaya çıkardı. Sonuç olarak, diğer numunelerle kıyasla en yüksek oksidasyon seviyesini sergilemiştir.

Project Number

Project number: 2020-038

References

  • M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, and M. Arif, Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Modern Electronic Materials, 3, 110–116, 2017. https://doi.org/10.1016/j.moem.2017.07.002.
  • A. Anwar, T.P. Chang, and C.T. Chen, Graphene oxide synthesis using a top–down approach and discrete characterization techniques: a holistic review. Carbon Letters, 32, 1–38, 2022. https://doi.org/10.1007/S42823-021-00272-Z.
  • M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, W.N.W. Salleh, and F. Aziz, Facile synthesis of highly favorable graphene oxide: Effect of oxidation degree on the structural, morphological, thermal and electrochemical properties. Materialia, 6, 100344, 2019. https://doi.org/10.1016/j.mtla.2019.100344.
  • X. Chen, Z. Qu, Z. Liu, and G. Ren, Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS Omega, 7, 23503–23510, 2022. https://doi.org/10.1021/acsomega.2c01963.
  • C. Mellado, T. Figueroa, R. Baez, M. Meléndrez, and K. Fernández, Effects of probe and bath ultrasonic treatments on graphene oxide structure. Materials Today Chemistry, 13, 1–7, 2019. https://doi.org/10.1016/j.mtchem.2019.04.006.
  • P. Majumder, and R. Gangopadhyay, Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC Advances, 12, 5686–5719, 2022. https://doi.org/10.1039/D1RA06731A.
  • L. Sun, Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering, 27, 2251–2260, 2019. https://doi.org/10.1016/j.cjche.2019.05.003.
  • J. Zhao, L. Liu, and F. Li, Fabrication and Reduction. In: Graphene Oxide: Physics and Applications. Springer Briefs in Physics, Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-44829-8_1.
  • R. Ikram, B.M. Jan, and W. Ahmad, An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, 9, 11587–11610, 2020. https://doi.org/10.1016/J.JMRT.2020.08.050.
  • S. Pei, Q. Wei, K. Huang, H.M. Cheng, and W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9, 1–9, 2018. https://doi.org/10.1038/s41467-017-02479-z.
  • P. Yu, Z. Tian, S.E. Lowe, J. Song, Z. Ma, X. Wang, Z.J. Han, Q. Bao, G.P. Simon, D. Li, and Y.L. Zhong, Mechanically-assisted electrochemical production of graphene oxide. Chemistry of Materials, 28, 8429–8438, 2016. https://doi.org/10.1021/acs.chemmater.6b04415.
  • A. Poniatowska, M. Trzaskowski, and T. Ciach, Production and properties of top-down and bottom-up graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 315–324, 2019. https://doi.org/10.1016/j.colsurfa.2018.10.049.
  • N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba, M. Masukume, and S. Sinha Ray, Top-down synthesis of graphene: A comprehensive review. FlatChem, 27, 100224, 2021. https://doi.org/10.1016/J.FLATC.2021.100224.
  • D.C. Marcano, D. V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814, 2010. https://doi.org/10.1021/nn1006368.
  • A.A. Olorunkosebi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana, O. Fasakin, E. Omotoso, K.O. Oyedotun, E.O.B. Ajayi, and N. Manyala, Optimization of graphene oxide through various Hummers’ methods and comparative reduction using green approach. Diamond and Related Materials, 117, 108456, 2021. https://doi.org/10.1016/J.DIAMOND.2021.108456.
  • N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, and C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering, 184, 469-477, 2017. https://doi.org/10.1016/j.proeng.2017.04.118.
  • J. Liu, S. Chen, Y. Liu, and B. Zhao, Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society, 26, 2022. https://doi.org/10.1016/J.JSCS.2022.101560.
  • A.M. Dimiev, and J.M. Tour, Mechanism of graphene oxide formation. ACS Nano, 8, 3060–3068, 2014. https://doi.org/10.1021/nn500606a.
  • M. Cai, D. Thorpe, D.H. Adamson, and H.C. Schniepp, Methods of graphite exfoliation. Journal of Materials Chemistry, 22, 24992–25002, 2012. https://doi.org/10.1039/c2jm34517j.
  • N. Liu, Q. Tang, B. Huang, and Y. Wang, Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production. Crystals, 12, 25, 12, 25, 2021. https://doi.org/10.3390/CRYST12010025.
  • R. Yuan, J. Yuan, Y. Wu, L. Chen, H. Zhou, and J. Chen, Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation. Applied Surface Science, 416, 868–877, 2017. https://doi.org/10.1016/j.apsusc.2017.04.181.
  • L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, and R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 15, 974–978, 2005. https://doi.org/10.1039/B413029D.
  • C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, and L.-J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 5, 2332–2339, 2011. https://doi.org/10.1021/nn200025p.
  • Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials, 8, 942, 2018. https://doi.org/10.3390/NANO8110942.
  • K. Muthoosamy, and S. Manickam, State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrasonics Sonochemistry, 39, 478–493, 2017. https://doi.org/10.1016/J.ULTSONCH.2017.05.019.
  • Y. Arao, and M. Kubouchi, High-rate production of few-layer graphene by high-power probe sonication. Carbon, 95, 802–808, 2015. https://doi.org/10.1016/J.CARBON.2015.08.108.
  • A. Ručigaj, J.G. Connell, M. Dular, and B. Genorio, Influence of the ultrasound cavitation intensity on reduced graphene oxide functionalization. Ultrasonics Sonochemistry, 90, 106212, 2022. https://doi.org/10.1016/J.ULTSONCH.2022.106212.
  • G.T.T. Le, N. Chanlek, J. Manyam, P. Opaprakasit, N. Grisdanurak, and P. Sreearunothai, Insight into the ultrasonication of graphene oxide with strong changes in its properties and performance for adsorption applications. Chemical Engineering Journal, 373, 1212–1222, 2019. https://doi.org/10.1016/J.CEJ.2019.05.108.
  • M. Sabbaghan, H. Charkhan, M. Ghalkhani, and J. Beheshtian, Ultrasonic route synthesis, characterization and electrochemical study of graphene oxide and reduced graphene oxide. Research on Chemical Intermediates, 45, 487–505, 2019. https://doi.org/10.1007/s11164-018-3613-8.
  • C. Botas, A.M. Pérez-Mas, P. Álvarez, R. Santamaría, M. Granda, C. Blanco, and R. Menéndez, Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon, 63, 576–578, 2013. https://doi.org/10.1016/j.carbon.2013.06.096.
  • S. Kumar, A. Garg, and A. Chowdhuri, Sonication effect on graphene oxide (GO) membranes for water purification applications. Materials Research Express, 6, 085620, 2019. https://doi.org/10.1088/2053-1591/ab1ffd.
  • H. Yang, H. Li, J. Zhai, L. Sun, and H. Yu, Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite. Industrial and Engineering Chemistry Research, 53, 17878–17883, 2014. https://doi.org/10.1021/ie503586v.
  • S. Kumar, A.K. Ojha, B. Ahmed, A. Kumar, J. Das, and A. Materny, Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Materials Today Communications, 11, 76–86, 2017. https://doi.org/10.1016/J.MTCOMM.2017.02.009.
  • R. Al-Gaashani, Y. Zakaria, O.S. Lee, J. Ponraj, V. Kochkodan, and M.A. Atieh, Effects of preparation temperature on production of graphene oxide by novel chemical processing. Ceramics International, 47, 10113–10122, 2021. https://doi.org/10.1016/J.CERAMINT.2020.12.159.
  • M.J. Yoo, and H.B. Park, Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon, 141, 515–522, 2019. https://doi.org/10.1016/j.carbon.2018.10.009.
  • D.G. Trikkaliotis, A.C. Mitropoulos, and G.Z. Kyzas, Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 600, 124928, 2020. https://doi.org/10.1016/j.colsurfa.2020.124928.
  • N. Yadav, and B. Lochab, A comparative study of graphene oxide: Hummers, intermediate and improved method. FlatChem, 13, 40–49, 2019. https://doi.org/10.1016/j.flatc.2019.02.001.
  • S. Zainab, S. Fraz, S.U. Awan, D. Hussain, S. Rizwan, and W. Mehmood, Optimized time dependent exfoliation of graphite for fabrication of Graphene/GO/GrO nanocomposite based pseudo-supercapacitor. Scientific Reports 13, 1–16, 2023. https://doi.org/10.1038/s41598-023-41309-9.
  • M.P. Lavin-Lopez, J.L. Valverde, L. Sanchez-Silva, and A. Romero, Solvent-Based Exfoliation via Sonication of Graphitic Materials for Graphene Manufacture. Industrial and Engineering Chemistry Research, 55, 845–855, 2016. https://doi.org/10.1021/ACS.IECR.5B03502.
  • D. Konios, M.M. Stylianakis, E. Stratakis, and E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108–112, 2014. https://doi.org/10.1016/j.jcis.2014.05.033.
  • S. Thakur, and N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 50, 5331–5339, 2012. https://doi.org/10.1016/j.carbon.2012.07.023.
  • N. Kumar, and V.C. Srivastava, Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega, 3, 10233–10242, 2018. https://doi.org/10.1021/acsomega.8b01283.
  • J. Guerrero-Contreras, and F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209–220, 2015. https://doi.org/10.1016/J.MATCHEMPHYS.2015.01.005.
  • G.Q. Qi, J. Cao, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, and M.B. Yang, Tuning the structure of graphene oxide and the properties of poly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication. Journal of Materials Chemistry A, 1, 3163–3170, 2013. https://doi.org/10.1039/C3TA01360J.
  • Z. Baig, O. Mamat, M. Mustapha, A. Mumtaz, K.S. Munir, and M. Sarfraz, Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrasonics Sonochemistry, 45, 133–149, 2018. https://doi.org/10.1016/J.ULTSONCH.2018.03.007.
  • M.F.R. Hanifah, J. Jaafar, M. Aziz, A.F. Ismail, M.A. Rahman, and M.H.D. Othman, Synthesis of Graphene Oxide Nanosheets via Modified Hummersâ€TM Method and Its Physicochemical Properties. Jurnal Teknologi, 74, 195–198, 2015. https://doi.org/10.11113/JT.V74.3555.
  • T. Soltani, and B. Kyu Lee, A benign ultrasonic route to reduced graphene oxide from pristine graphite. Journal of Colloid and Interface Science, 486, 337–343, 2017. https://doi.org/10.1016/J.JCIS.2016.09.075.
  • D.T. Phan, and G.S. Chung, P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). Journal of Physics and Chemistry of Solids, 74, 1509–1514, 2013. https://doi.org/10.1016/J.JPCS.2013.02.007.
  • A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana Reddy, and P.M. Ajayan, Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. The Journal of Physical Chemistry Letters, 3, 986–991, 2012. https://doi.org/10.1021/jz300096t.
  • P. Makuła, M. Pacia, and W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters, 9, 6814–6817, 2018. https://doi.org/10.1021/acs.jpclett.8b02892
  • A.H. de Lima, C.T. Tavares, C.C.S. da Cunha, N.C. Vicentini, G.R. Carvalho, B. Fragneaud, I.O. Maciel, C. Legnani, W.G. Quirino, L.F.C. de Oliveira, F. Sato, and J.P.A. de Mendonça, Origin of optical bandgap fluctuations in graphene oxide. The European Physical Journal B, 93, 1–12, 2020. https://doi.org/10.1140/EPJB/E2020-100578-7
  • N. Sharma, S. Tomar, M. Shkir, R. Kant Choubey, and A. Singh, Study of Optical and Electrical Properties of Graphene Oxide. Materials Today: Proceedings, 36, 730–735, 2021. https://doi.org/10.1016/J.MATPR.2020.04.861.
  • P. Gangwar, S. Singh, and N. Khare, Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry. Applied Physics A: Materials Science and Processing, 124, 1–8, 2018. https://doi.org/10.1007/S00339-018-1999-1.
  • K.O. Olumurewa, B. Olofinjana, O. Fasakin, M.A. Eleruja, E.O.B. Ajayi, K.O. Olumurewa, B. Olofinjana, O. Fasakin, M.A. Eleruja, and E.O.B. Ajayi, Characterization of High Yield Graphene Oxide Synthesized by Simplified Hummers Method. Graphene, 6, 85–98, 2017. https://doi.org/10.4236/GRAPHENE.2017.64007.
  • Fauzia, M.A. Khan, M. Chaman, and A. Azam, Antibacterial and sunlight-driven photocatalytic activity of graphene oxide conjugated CeO2 nanoparticles. Scientific Reports, 14, 1–17, 2024. https://doi.org/10.1038/s41598-024-54905-0.
  • C. Aydin, H. Aydin, M. Taskin, and F. Yakuphanoglu, A Novel Study: The Effect of Graphene Oxide on the Morphology, Crystal Structure, Optical and Electrical Properties of Lanthanum Ferrite Based Nano Electroceramics Synthesized by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 19, 2547–2555, 2018. https://doi.org/10.1166/JNN.2019.15841.
  • A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143, 47–57, 2007. https://doi.org/10.1016/J.SSC.2007.03.052.
  • M. PriyaDarshani, and R. Sharma, Controlling the bandgap of graphene oxide via varying KMnO4. Optical Materials, 147, 114634, 2024. https://doi.org/10.1016/J.OPTMAT.2023.114634.
  • K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi, and E. Jaehne, The Route to Functional Graphene Oxide. ChemPhysChem, 11, 2131–2139, 2010. https://doi.org/10.1002/CPHC.201000132.
  • S. Claramunt, A. Varea, D. López-Díaz, M.M. Velázquez, A. Cornet, and A. Cirera, The importance of interbands on the interpretation of the raman spectrum of graphene oxide. Journal of Physical Chemistry C, 119, 10123–10129, 2015. https://doi.org/10.1021/ACS.JPCC.5B01590.
  • S. Eigler, and A. Hirsch, Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie International Edition, 53, 7720–7738, 2014. https://doi.org/10.1002/ANIE.201402780
  • M. Sieradzka, C. Ślusarczyk, W. Biniaś, and R. Fryczkowski, The Role of the Oxidation and Reduction Parameters on the Properties of the Reduced Graphene Oxide. Coatings, 11, 166, 2021. https://doi.org/10.3390/COATINGS11020166
  • K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38–49, 2013. https://doi.org/10.1016/j.carbon.2012.10.013.
  • A.I. Abd-Elhamid, H.F. Aly, H.A.M. Soliman, and A.A. El-Shanshory, Graphene oxide: Follow the oxidation mechanism and its application in water treatment. Journal of Molecular Liquids, 265, 226–237, 2018. https://doi.org/10.1016/J.MOLLIQ.2018.05.127.
  • Q. Guo, S. Chen, and X. Qin, ZnO–SnO2/graphene composites as high capacity anode materials for lithium ion batteries. Materials Letters, 128, 50–53, 2014. https://doi.org/10.1016/j.matlet.2014.04.096
  • R. Muzyka, M. Kwoka, Ł. Smȩdowski, N. Díez, and G. Gryglewicz, Oxidation of graphite by different modified Hummers methods. New Carbon Materials, 32, 15–20, 2017. https://doi.org/10.1016/S1872-5805(17)60102-1.
  • Y. Hou, S. Lv, L. Liu, and X. Liu, High-quality preparation of graphene oxide via the Hummers’ method: Understanding the roles of the intercalator, oxidant, and graphite particle size. Ceramics International, 46, 2392–2402, 2020. https://doi.org/10.1016/j.ceramint.2019.09.231.
  • A. Asadi, F. Pourfattah, I. Miklós Szilágyi, M. Afrand, G. Żyła, H. Seon Ahn, S. Wongwises, H. Minh Nguyen, A. Arabkoohsar, and O. Mahian, Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 58, 104701, 2019. https://doi.org/10.1016/J.ULTSONCH.2019.104701.
  • S. An, Graphene Oxides in Water: Characterization, Reactivity, and Application. PhD Thesis, McKelvey School of Engineering, USA, 2018. https://doi.org/https://doi.org/10.7936/qgbq-fy39.

Evaluating the impact of sonication process on graphene oxide structural properties

Year 2024, Volume: 13 Issue: 4, 1 - 1
https://doi.org/10.28948/ngumuh.1470478

Abstract

Graphene oxide (GO) is one of the members of carbon-based nanomaterials and can be featured as a graphene structure decorated with various oxygenated functional groups. Hummers method is one of the most known and versatile methods for the production of GO nanomaterials because of its ease of application, parameter controllability, and high yield. This process enables graphite oxidation and exfoliation into single or multi-layered GO sheets. Exfoliation separates multilayered graphite oxide flakes or particles; it forms single layer GO by forcing oxidizing agents or solvent molecules between layers. The sonication process can exfoliate the oxidized layers, resulting in the formation of GO structure when the exfoliated layers consist of only one or a few layers of carbon atoms. This process is considered among the key parameters of the Hummers method that influence the characteristics of GO-based nanomaterials. In this study, the impact of sonication process parameters, duration time, and power on morphological and structural characteristics of GO development was examined. For this purpose, characterization studies were performed by using a Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and Raman spectroscopy analysis. It has been determined that the increase in applied sonication power and duration causes the distance between layers to decrease and defects to increase in the resulting GO structure. The findings revealed that the sample treated with the lowest power and shortest sonication time had the highest interlayer distance value of 7.83Å and the lowest C/O ratio of 1.62. Consequently, it exhibited the highest oxidation level compared to the other samples.

Supporting Institution

Manisa Celal Bayar University Scientific Research Projects Coordination Unit (Project number: 2020-038)

Project Number

Project number: 2020-038

Thanks

The authors would like to thank the Manisa Celal Bayar University Scientific Research Projects Coordination Unit (Project number: 2020-038) for their financial support of this study. The authors express special thanks to Dokuz Eylul University (DEU) Department of Metallurgical and Materials Engineering and Center for Fabrication and Application of Electronic Materials for their valuable assistance.

References

  • M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, and M. Arif, Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Modern Electronic Materials, 3, 110–116, 2017. https://doi.org/10.1016/j.moem.2017.07.002.
  • A. Anwar, T.P. Chang, and C.T. Chen, Graphene oxide synthesis using a top–down approach and discrete characterization techniques: a holistic review. Carbon Letters, 32, 1–38, 2022. https://doi.org/10.1007/S42823-021-00272-Z.
  • M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, W.N.W. Salleh, and F. Aziz, Facile synthesis of highly favorable graphene oxide: Effect of oxidation degree on the structural, morphological, thermal and electrochemical properties. Materialia, 6, 100344, 2019. https://doi.org/10.1016/j.mtla.2019.100344.
  • X. Chen, Z. Qu, Z. Liu, and G. Ren, Mechanism of Oxidization of Graphite to Graphene Oxide by the Hummers Method. ACS Omega, 7, 23503–23510, 2022. https://doi.org/10.1021/acsomega.2c01963.
  • C. Mellado, T. Figueroa, R. Baez, M. Meléndrez, and K. Fernández, Effects of probe and bath ultrasonic treatments on graphene oxide structure. Materials Today Chemistry, 13, 1–7, 2019. https://doi.org/10.1016/j.mtchem.2019.04.006.
  • P. Majumder, and R. Gangopadhyay, Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC Advances, 12, 5686–5719, 2022. https://doi.org/10.1039/D1RA06731A.
  • L. Sun, Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering, 27, 2251–2260, 2019. https://doi.org/10.1016/j.cjche.2019.05.003.
  • J. Zhao, L. Liu, and F. Li, Fabrication and Reduction. In: Graphene Oxide: Physics and Applications. Springer Briefs in Physics, Springer, Berlin, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-44829-8_1.
  • R. Ikram, B.M. Jan, and W. Ahmad, An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, 9, 11587–11610, 2020. https://doi.org/10.1016/J.JMRT.2020.08.050.
  • S. Pei, Q. Wei, K. Huang, H.M. Cheng, and W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9, 1–9, 2018. https://doi.org/10.1038/s41467-017-02479-z.
  • P. Yu, Z. Tian, S.E. Lowe, J. Song, Z. Ma, X. Wang, Z.J. Han, Q. Bao, G.P. Simon, D. Li, and Y.L. Zhong, Mechanically-assisted electrochemical production of graphene oxide. Chemistry of Materials, 28, 8429–8438, 2016. https://doi.org/10.1021/acs.chemmater.6b04415.
  • A. Poniatowska, M. Trzaskowski, and T. Ciach, Production and properties of top-down and bottom-up graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 315–324, 2019. https://doi.org/10.1016/j.colsurfa.2018.10.049.
  • N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba, M. Masukume, and S. Sinha Ray, Top-down synthesis of graphene: A comprehensive review. FlatChem, 27, 100224, 2021. https://doi.org/10.1016/J.FLATC.2021.100224.
  • D.C. Marcano, D. V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814, 2010. https://doi.org/10.1021/nn1006368.
  • A.A. Olorunkosebi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana, O. Fasakin, E. Omotoso, K.O. Oyedotun, E.O.B. Ajayi, and N. Manyala, Optimization of graphene oxide through various Hummers’ methods and comparative reduction using green approach. Diamond and Related Materials, 117, 108456, 2021. https://doi.org/10.1016/J.DIAMOND.2021.108456.
  • N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, and C.H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering, 184, 469-477, 2017. https://doi.org/10.1016/j.proeng.2017.04.118.
  • J. Liu, S. Chen, Y. Liu, and B. Zhao, Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society, 26, 2022. https://doi.org/10.1016/J.JSCS.2022.101560.
  • A.M. Dimiev, and J.M. Tour, Mechanism of graphene oxide formation. ACS Nano, 8, 3060–3068, 2014. https://doi.org/10.1021/nn500606a.
  • M. Cai, D. Thorpe, D.H. Adamson, and H.C. Schniepp, Methods of graphite exfoliation. Journal of Materials Chemistry, 22, 24992–25002, 2012. https://doi.org/10.1039/c2jm34517j.
  • N. Liu, Q. Tang, B. Huang, and Y. Wang, Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production. Crystals, 12, 25, 12, 25, 2021. https://doi.org/10.3390/CRYST12010025.
  • R. Yuan, J. Yuan, Y. Wu, L. Chen, H. Zhou, and J. Chen, Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation. Applied Surface Science, 416, 868–877, 2017. https://doi.org/10.1016/j.apsusc.2017.04.181.
  • L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, and R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry, 15, 974–978, 2005. https://doi.org/10.1039/B413029D.
  • C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, and L.-J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 5, 2332–2339, 2011. https://doi.org/10.1021/nn200025p.
  • Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials, 8, 942, 2018. https://doi.org/10.3390/NANO8110942.
  • K. Muthoosamy, and S. Manickam, State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrasonics Sonochemistry, 39, 478–493, 2017. https://doi.org/10.1016/J.ULTSONCH.2017.05.019.
  • Y. Arao, and M. Kubouchi, High-rate production of few-layer graphene by high-power probe sonication. Carbon, 95, 802–808, 2015. https://doi.org/10.1016/J.CARBON.2015.08.108.
  • A. Ručigaj, J.G. Connell, M. Dular, and B. Genorio, Influence of the ultrasound cavitation intensity on reduced graphene oxide functionalization. Ultrasonics Sonochemistry, 90, 106212, 2022. https://doi.org/10.1016/J.ULTSONCH.2022.106212.
  • G.T.T. Le, N. Chanlek, J. Manyam, P. Opaprakasit, N. Grisdanurak, and P. Sreearunothai, Insight into the ultrasonication of graphene oxide with strong changes in its properties and performance for adsorption applications. Chemical Engineering Journal, 373, 1212–1222, 2019. https://doi.org/10.1016/J.CEJ.2019.05.108.
  • M. Sabbaghan, H. Charkhan, M. Ghalkhani, and J. Beheshtian, Ultrasonic route synthesis, characterization and electrochemical study of graphene oxide and reduced graphene oxide. Research on Chemical Intermediates, 45, 487–505, 2019. https://doi.org/10.1007/s11164-018-3613-8.
  • C. Botas, A.M. Pérez-Mas, P. Álvarez, R. Santamaría, M. Granda, C. Blanco, and R. Menéndez, Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon, 63, 576–578, 2013. https://doi.org/10.1016/j.carbon.2013.06.096.
  • S. Kumar, A. Garg, and A. Chowdhuri, Sonication effect on graphene oxide (GO) membranes for water purification applications. Materials Research Express, 6, 085620, 2019. https://doi.org/10.1088/2053-1591/ab1ffd.
  • H. Yang, H. Li, J. Zhai, L. Sun, and H. Yu, Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite. Industrial and Engineering Chemistry Research, 53, 17878–17883, 2014. https://doi.org/10.1021/ie503586v.
  • S. Kumar, A.K. Ojha, B. Ahmed, A. Kumar, J. Das, and A. Materny, Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Materials Today Communications, 11, 76–86, 2017. https://doi.org/10.1016/J.MTCOMM.2017.02.009.
  • R. Al-Gaashani, Y. Zakaria, O.S. Lee, J. Ponraj, V. Kochkodan, and M.A. Atieh, Effects of preparation temperature on production of graphene oxide by novel chemical processing. Ceramics International, 47, 10113–10122, 2021. https://doi.org/10.1016/J.CERAMINT.2020.12.159.
  • M.J. Yoo, and H.B. Park, Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon, 141, 515–522, 2019. https://doi.org/10.1016/j.carbon.2018.10.009.
  • D.G. Trikkaliotis, A.C. Mitropoulos, and G.Z. Kyzas, Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 600, 124928, 2020. https://doi.org/10.1016/j.colsurfa.2020.124928.
  • N. Yadav, and B. Lochab, A comparative study of graphene oxide: Hummers, intermediate and improved method. FlatChem, 13, 40–49, 2019. https://doi.org/10.1016/j.flatc.2019.02.001.
  • S. Zainab, S. Fraz, S.U. Awan, D. Hussain, S. Rizwan, and W. Mehmood, Optimized time dependent exfoliation of graphite for fabrication of Graphene/GO/GrO nanocomposite based pseudo-supercapacitor. Scientific Reports 13, 1–16, 2023. https://doi.org/10.1038/s41598-023-41309-9.
  • M.P. Lavin-Lopez, J.L. Valverde, L. Sanchez-Silva, and A. Romero, Solvent-Based Exfoliation via Sonication of Graphitic Materials for Graphene Manufacture. Industrial and Engineering Chemistry Research, 55, 845–855, 2016. https://doi.org/10.1021/ACS.IECR.5B03502.
  • D. Konios, M.M. Stylianakis, E. Stratakis, and E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 430, 108–112, 2014. https://doi.org/10.1016/j.jcis.2014.05.033.
  • S. Thakur, and N. Karak, Green reduction of graphene oxide by aqueous phytoextracts. Carbon, 50, 5331–5339, 2012. https://doi.org/10.1016/j.carbon.2012.07.023.
  • N. Kumar, and V.C. Srivastava, Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process. ACS Omega, 3, 10233–10242, 2018. https://doi.org/10.1021/acsomega.8b01283.
  • J. Guerrero-Contreras, and F. Caballero-Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209–220, 2015. https://doi.org/10.1016/J.MATCHEMPHYS.2015.01.005.
  • G.Q. Qi, J. Cao, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, and M.B. Yang, Tuning the structure of graphene oxide and the properties of poly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication. Journal of Materials Chemistry A, 1, 3163–3170, 2013. https://doi.org/10.1039/C3TA01360J.
  • Z. Baig, O. Mamat, M. Mustapha, A. Mumtaz, K.S. Munir, and M. Sarfraz, Investigation of tip sonication effects on structural quality of graphene nanoplatelets (GNPs) for superior solvent dispersion. Ultrasonics Sonochemistry, 45, 133–149, 2018. https://doi.org/10.1016/J.ULTSONCH.2018.03.007.
  • M.F.R. Hanifah, J. Jaafar, M. Aziz, A.F. Ismail, M.A. Rahman, and M.H.D. Othman, Synthesis of Graphene Oxide Nanosheets via Modified Hummersâ€TM Method and Its Physicochemical Properties. Jurnal Teknologi, 74, 195–198, 2015. https://doi.org/10.11113/JT.V74.3555.
  • T. Soltani, and B. Kyu Lee, A benign ultrasonic route to reduced graphene oxide from pristine graphite. Journal of Colloid and Interface Science, 486, 337–343, 2017. https://doi.org/10.1016/J.JCIS.2016.09.075.
  • D.T. Phan, and G.S. Chung, P–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). Journal of Physics and Chemistry of Solids, 74, 1509–1514, 2013. https://doi.org/10.1016/J.JPCS.2013.02.007.
  • A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana Reddy, and P.M. Ajayan, Controlled, Stepwise Reduction and Band Gap Manipulation of Graphene Oxide. The Journal of Physical Chemistry Letters, 3, 986–991, 2012. https://doi.org/10.1021/jz300096t.
  • P. Makuła, M. Pacia, and W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. Journal of Physical Chemistry Letters, 9, 6814–6817, 2018. https://doi.org/10.1021/acs.jpclett.8b02892
  • A.H. de Lima, C.T. Tavares, C.C.S. da Cunha, N.C. Vicentini, G.R. Carvalho, B. Fragneaud, I.O. Maciel, C. Legnani, W.G. Quirino, L.F.C. de Oliveira, F. Sato, and J.P.A. de Mendonça, Origin of optical bandgap fluctuations in graphene oxide. The European Physical Journal B, 93, 1–12, 2020. https://doi.org/10.1140/EPJB/E2020-100578-7
  • N. Sharma, S. Tomar, M. Shkir, R. Kant Choubey, and A. Singh, Study of Optical and Electrical Properties of Graphene Oxide. Materials Today: Proceedings, 36, 730–735, 2021. https://doi.org/10.1016/J.MATPR.2020.04.861.
  • P. Gangwar, S. Singh, and N. Khare, Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry. Applied Physics A: Materials Science and Processing, 124, 1–8, 2018. https://doi.org/10.1007/S00339-018-1999-1.
  • K.O. Olumurewa, B. Olofinjana, O. Fasakin, M.A. Eleruja, E.O.B. Ajayi, K.O. Olumurewa, B. Olofinjana, O. Fasakin, M.A. Eleruja, and E.O.B. Ajayi, Characterization of High Yield Graphene Oxide Synthesized by Simplified Hummers Method. Graphene, 6, 85–98, 2017. https://doi.org/10.4236/GRAPHENE.2017.64007.
  • Fauzia, M.A. Khan, M. Chaman, and A. Azam, Antibacterial and sunlight-driven photocatalytic activity of graphene oxide conjugated CeO2 nanoparticles. Scientific Reports, 14, 1–17, 2024. https://doi.org/10.1038/s41598-024-54905-0.
  • C. Aydin, H. Aydin, M. Taskin, and F. Yakuphanoglu, A Novel Study: The Effect of Graphene Oxide on the Morphology, Crystal Structure, Optical and Electrical Properties of Lanthanum Ferrite Based Nano Electroceramics Synthesized by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 19, 2547–2555, 2018. https://doi.org/10.1166/JNN.2019.15841.
  • A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143, 47–57, 2007. https://doi.org/10.1016/J.SSC.2007.03.052.
  • M. PriyaDarshani, and R. Sharma, Controlling the bandgap of graphene oxide via varying KMnO4. Optical Materials, 147, 114634, 2024. https://doi.org/10.1016/J.OPTMAT.2023.114634.
  • K. Haubner, J. Murawski, P. Olk, L.M. Eng, C. Ziegler, B. Adolphi, and E. Jaehne, The Route to Functional Graphene Oxide. ChemPhysChem, 11, 2131–2139, 2010. https://doi.org/10.1002/CPHC.201000132.
  • S. Claramunt, A. Varea, D. López-Díaz, M.M. Velázquez, A. Cornet, and A. Cirera, The importance of interbands on the interpretation of the raman spectrum of graphene oxide. Journal of Physical Chemistry C, 119, 10123–10129, 2015. https://doi.org/10.1021/ACS.JPCC.5B01590.
  • S. Eigler, and A. Hirsch, Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie International Edition, 53, 7720–7738, 2014. https://doi.org/10.1002/ANIE.201402780
  • M. Sieradzka, C. Ślusarczyk, W. Biniaś, and R. Fryczkowski, The Role of the Oxidation and Reduction Parameters on the Properties of the Reduced Graphene Oxide. Coatings, 11, 166, 2021. https://doi.org/10.3390/COATINGS11020166
  • K. Krishnamoorthy, M. Veerapandian, K. Yun, and S.J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38–49, 2013. https://doi.org/10.1016/j.carbon.2012.10.013.
  • A.I. Abd-Elhamid, H.F. Aly, H.A.M. Soliman, and A.A. El-Shanshory, Graphene oxide: Follow the oxidation mechanism and its application in water treatment. Journal of Molecular Liquids, 265, 226–237, 2018. https://doi.org/10.1016/J.MOLLIQ.2018.05.127.
  • Q. Guo, S. Chen, and X. Qin, ZnO–SnO2/graphene composites as high capacity anode materials for lithium ion batteries. Materials Letters, 128, 50–53, 2014. https://doi.org/10.1016/j.matlet.2014.04.096
  • R. Muzyka, M. Kwoka, Ł. Smȩdowski, N. Díez, and G. Gryglewicz, Oxidation of graphite by different modified Hummers methods. New Carbon Materials, 32, 15–20, 2017. https://doi.org/10.1016/S1872-5805(17)60102-1.
  • Y. Hou, S. Lv, L. Liu, and X. Liu, High-quality preparation of graphene oxide via the Hummers’ method: Understanding the roles of the intercalator, oxidant, and graphite particle size. Ceramics International, 46, 2392–2402, 2020. https://doi.org/10.1016/j.ceramint.2019.09.231.
  • A. Asadi, F. Pourfattah, I. Miklós Szilágyi, M. Afrand, G. Żyła, H. Seon Ahn, S. Wongwises, H. Minh Nguyen, A. Arabkoohsar, and O. Mahian, Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 58, 104701, 2019. https://doi.org/10.1016/J.ULTSONCH.2019.104701.
  • S. An, Graphene Oxides in Water: Characterization, Reactivity, and Application. PhD Thesis, McKelvey School of Engineering, USA, 2018. https://doi.org/https://doi.org/10.7936/qgbq-fy39.
There are 69 citations in total.

Details

Primary Language English
Subjects Functional Materials, Material Characterization
Journal Section Articles
Authors

Fatih Sargın 0000-0002-2683-4543

Funda Ak Azem 0000-0002-4446-1437

Kürşat Kanbur 0000-0001-6343-2992

Işıl Birlik 0000-0003-3098-2001

Ahmet Türk 0000-0002-4260-6372

Project Number Project number: 2020-038
Early Pub Date September 2, 2024
Publication Date
Submission Date April 22, 2024
Acceptance Date July 16, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Sargın, F., Ak Azem, F., Kanbur, K., Birlik, I., et al. (2024). Evaluating the impact of sonication process on graphene oxide structural properties. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1-1. https://doi.org/10.28948/ngumuh.1470478
AMA Sargın F, Ak Azem F, Kanbur K, Birlik I, Türk A. Evaluating the impact of sonication process on graphene oxide structural properties. NOHU J. Eng. Sci. September 2024;13(4):1-1. doi:10.28948/ngumuh.1470478
Chicago Sargın, Fatih, Funda Ak Azem, Kürşat Kanbur, Işıl Birlik, and Ahmet Türk. “Evaluating the Impact of Sonication Process on Graphene Oxide Structural Properties”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (September 2024): 1-1. https://doi.org/10.28948/ngumuh.1470478.
EndNote Sargın F, Ak Azem F, Kanbur K, Birlik I, Türk A (September 1, 2024) Evaluating the impact of sonication process on graphene oxide structural properties. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1–1.
IEEE F. Sargın, F. Ak Azem, K. Kanbur, I. Birlik, and A. Türk, “Evaluating the impact of sonication process on graphene oxide structural properties”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1–1, 2024, doi: 10.28948/ngumuh.1470478.
ISNAD Sargın, Fatih et al. “Evaluating the Impact of Sonication Process on Graphene Oxide Structural Properties”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (September 2024), 1-1. https://doi.org/10.28948/ngumuh.1470478.
JAMA Sargın F, Ak Azem F, Kanbur K, Birlik I, Türk A. Evaluating the impact of sonication process on graphene oxide structural properties. NOHU J. Eng. Sci. 2024;13:1–1.
MLA Sargın, Fatih et al. “Evaluating the Impact of Sonication Process on Graphene Oxide Structural Properties”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1-1, doi:10.28948/ngumuh.1470478.
Vancouver Sargın F, Ak Azem F, Kanbur K, Birlik I, Türk A. Evaluating the impact of sonication process on graphene oxide structural properties. NOHU J. Eng. Sci. 2024;13(4):1-.

download