2.4 GHz için faz kaydırıcı akıllı yansıtıcı yüzey tasarımı
Year 2024,
Volume: 13 Issue: 4, 1224 - 1230, 15.10.2024
Yasin Can Tekkol
,
Ayşe Elif Canbilen
Abstract
Bu çalışmada 2.4 GHz çalışma frekansı için 3x4 yama yüzeyinden oluşan gelen sinyallerin faz açılarını değiştiren akıllı yansıtıcı yüzey (IRS) tasarımı sunulmuştur. IRS tasarımda dielektrik malzeme olarak FR-4, yansıtıcı yüzeylerde ve toprak düzlemde bakır malzeme seçilmiştir. IRS tasarımında varaktör diyot kullanılarak tasarıma faz kaydırıcı özellik kazandırılmıştır. IRS tasarımını ve tasarımın faz kaydırıcı özelliğini test etmek için gerekli kaynak boynuz anten ve varaktör diyotlar ANSYS’in HFSS (v21) programı ile tasarlanmış ve simüle edilmiştir. Simülasyon sonucunda IRS’e gelen sinyallerin IRS üzerinde bulunan varaktör diyot eşdeğer devrelerinin kapasite değerleri değiştirilerek faz açılarının değiştirilebildiği ortaya konulmuş ve tasarıma ait geri dönüş kayıpları ve kazanç değeri verilmiştir.
Supporting Institution
Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü
Thanks
Bu çalışma, Konya Teknik Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinatörlüğü tarafından 221002029 no.lu tez projesi kapsamında desteklenmiştir.
References
- S. Zhang, Q. Wu, S. Xu and G. Y. Li, Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks. IEEE Communications Surveys & Tutorials, 19 (1), 33-56 2016. https://www.doi.org/10.1109/COMST.2016.2594120
- Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng and R. Schober, An overview of sustainable green 5G networks. IEEE Wireless Communications, 24 (4), 72-80, 2017. https://www.doi.org/10.1109/MWC.2017.1600343
- Q. Wu, and R. Zhang, Intelligent reflecting surface enhanced wireless network. Joint active and passive beamforming design. IEEE Global Communications Conference (GLOBECOM), pp. 1-6, Abu Dhabi, United Arab Emirates, 2018.
- Q. Wu, and R. Zhang, Towards smart and reconfigurable environment, Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58 (1), 106-112, 2019. https://www.doi.org/10.1109/MCOM.001.1900107
- L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, C-B. Chae and L. Hanzo, Reconfigurable intelligent surface-based wireless communications, Antenna design, prototyping, and experimental results. IEEE Access, 8, 45913-45923, 2020. https://www.doi.org/10.1109/ACCESS.2020.2977772
- W. Tang, X. Li, J. Y. Dai, S. Jin, Y. Zeng, Q. Cheng and T. J. Cui, Wireless communications with programmable metasurface: Transceiver design and experimental results. China Communications, 16 (5), 46-61 2019. https://www.doi.org/10.23919/j.cc.2019.05.004
- A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17 (4) 2347-2376 2015. https://www.doi.org/10.1109/COMST.2015.2444095
- M. Chen, U. Challita, W. Saad, C. Yin and M. Debbah, Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 21 (4) 3039-3071 2019. https://www.doi.org/10.1109/COMST.2019.2926625
- M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, A survey of autonomous vehicles: Enabling communication technologies and challenges. Sensors, 21 (3), 706, 2021. https://doi.org/10.3390/s21030706
- S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain and K. S. Kwak, The internet of things for health care: a comprehensive survey. IEEE Access 3, 678-708, 2015. https://www.doi.org/10.1109/ACCESS.2015.2437951
- A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, Internet of things for smart cities. IEEE Internet of Things Journal, 1 (1), 22-32, 2014. https://www.doi.org/10.1109/JIOT.2014.2306328
- Q. Z. Ahmed, M. Hafeez, F. A. Khan and P. Lazaridis, Towards beyond 5G future wireless networks with focus towards indoor localization. In: 2020 IEEE Eighth International Conference on Communications and Networking (ComNet), pp. 1-5 Hammamet, Tunisia, 2020.
- X. Tan, Z. Sun, J. M. Jornet and D. Pados, Increasing indoor spectrum sharing capacity using smart reflect-array. IEEE International Conference on Communications (ICC), pp. 1-6, Kuala Lumpur, Malaysia, 2016.
- Y. Zou, S. Gong, J. Xu, W. Cheng, D. T. Hoang and D. Niyato, Wireless powered intelligent reflecting surfaces for enhancing wireless communications. IEEE Transactions on Vehicular Technology, 69 (10), 12369-12373, 2020. https://www.doi.org/10.1109/TVT.2020.3011942
- C. Qiu, Q. Wu, M. Hua, W. Chen, S. Ma, F. Hou, D. W. K. Ng and A. L. Swindlehurst, Intelligent Reflecting Surface Empowered Self-Interference Cancellation in Full-Duplex Systems. in IEEE Transactions on Communications. 72 (5), 2945-2958, 2024. https://www.doi.org/10.1109/TCOMM.2023.3347576
- SMV1247-SMV1255 Series: Hyperabrupt Junction Tuning Varactors data sheet. https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/101-200/SMV1247_SMV1255_Series_200061W.pdf
Phase shifter intelligent reflective surface design for 2.4 GHz
Year 2024,
Volume: 13 Issue: 4, 1224 - 1230, 15.10.2024
Yasin Can Tekkol
,
Ayşe Elif Canbilen
Abstract
In this study, an intelligent reflective surface (IRS) design consisting of a 3x4 patch surface that intentionally changes the phase angles of incoming signals for the 2.4 GHz operating frequency is presented. In the design of this IRS, FR-4 is chosen as the dielectric material, and copper is used to create both the reflecting elements and the ground plane. Phase shifting characteristic is achieved by using varactor diodes on the designed two-dimensional surface. In order to test the behaviour of the IRS, a horn antenna is also designed to be used as a source with the ANSYS HFSS (v21) program. The obtained results are presented in terms of return loss and gain values of the IRS. The results of the simulations reveal that the phase angles of the incoming signals can be adjusted as expected by changing the capacity values of the varactor diodes modelled by their equivalent circuits on the IRS.
Supporting Institution
Konya Technical University Scientific Research Projects (BAP) Coordination Office
Thanks
This study was supported by Konya Technical University Scientific Research Projects (BAP) Coordination Office within the scope of thesis project no. 221002029.
References
- S. Zhang, Q. Wu, S. Xu and G. Y. Li, Fundamental green tradeoffs: Progresses, challenges, and impacts on 5G networks. IEEE Communications Surveys & Tutorials, 19 (1), 33-56 2016. https://www.doi.org/10.1109/COMST.2016.2594120
- Q. Wu, G. Y. Li, W. Chen, D. W. K. Ng and R. Schober, An overview of sustainable green 5G networks. IEEE Wireless Communications, 24 (4), 72-80, 2017. https://www.doi.org/10.1109/MWC.2017.1600343
- Q. Wu, and R. Zhang, Intelligent reflecting surface enhanced wireless network. Joint active and passive beamforming design. IEEE Global Communications Conference (GLOBECOM), pp. 1-6, Abu Dhabi, United Arab Emirates, 2018.
- Q. Wu, and R. Zhang, Towards smart and reconfigurable environment, Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58 (1), 106-112, 2019. https://www.doi.org/10.1109/MCOM.001.1900107
- L. Dai, B. Wang, M. Wang, X. Yang, J. Tan, S. Bi, S. Xu, F. Yang, Z. Chen, M. D. Renzo, C-B. Chae and L. Hanzo, Reconfigurable intelligent surface-based wireless communications, Antenna design, prototyping, and experimental results. IEEE Access, 8, 45913-45923, 2020. https://www.doi.org/10.1109/ACCESS.2020.2977772
- W. Tang, X. Li, J. Y. Dai, S. Jin, Y. Zeng, Q. Cheng and T. J. Cui, Wireless communications with programmable metasurface: Transceiver design and experimental results. China Communications, 16 (5), 46-61 2019. https://www.doi.org/10.23919/j.cc.2019.05.004
- A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17 (4) 2347-2376 2015. https://www.doi.org/10.1109/COMST.2015.2444095
- M. Chen, U. Challita, W. Saad, C. Yin and M. Debbah, Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 21 (4) 3039-3071 2019. https://www.doi.org/10.1109/COMST.2019.2926625
- M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, A survey of autonomous vehicles: Enabling communication technologies and challenges. Sensors, 21 (3), 706, 2021. https://doi.org/10.3390/s21030706
- S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain and K. S. Kwak, The internet of things for health care: a comprehensive survey. IEEE Access 3, 678-708, 2015. https://www.doi.org/10.1109/ACCESS.2015.2437951
- A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, Internet of things for smart cities. IEEE Internet of Things Journal, 1 (1), 22-32, 2014. https://www.doi.org/10.1109/JIOT.2014.2306328
- Q. Z. Ahmed, M. Hafeez, F. A. Khan and P. Lazaridis, Towards beyond 5G future wireless networks with focus towards indoor localization. In: 2020 IEEE Eighth International Conference on Communications and Networking (ComNet), pp. 1-5 Hammamet, Tunisia, 2020.
- X. Tan, Z. Sun, J. M. Jornet and D. Pados, Increasing indoor spectrum sharing capacity using smart reflect-array. IEEE International Conference on Communications (ICC), pp. 1-6, Kuala Lumpur, Malaysia, 2016.
- Y. Zou, S. Gong, J. Xu, W. Cheng, D. T. Hoang and D. Niyato, Wireless powered intelligent reflecting surfaces for enhancing wireless communications. IEEE Transactions on Vehicular Technology, 69 (10), 12369-12373, 2020. https://www.doi.org/10.1109/TVT.2020.3011942
- C. Qiu, Q. Wu, M. Hua, W. Chen, S. Ma, F. Hou, D. W. K. Ng and A. L. Swindlehurst, Intelligent Reflecting Surface Empowered Self-Interference Cancellation in Full-Duplex Systems. in IEEE Transactions on Communications. 72 (5), 2945-2958, 2024. https://www.doi.org/10.1109/TCOMM.2023.3347576
- SMV1247-SMV1255 Series: Hyperabrupt Junction Tuning Varactors data sheet. https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/101-200/SMV1247_SMV1255_Series_200061W.pdf