Research Article
BibTex RIS Cite

Uçan nesnelerin THz haberleşmesi

Year 2024, Volume: 13 Issue: 4, 1389 - 1399, 15.10.2024
https://doi.org/10.28948/ngumuh.1441329

Abstract

Çalışmamızda THz kanalı uygulamaları ve THz bandı özellikleri incelenmiştir. THz bandında havadan yere, havadan havaya iletişimde kapasiteyi etkileyen, anten gücü, mesafe, ortama bağlı emilim kaybı gibi faktörler incelenmiştir. Her maddenin moleküler yapısı farklı olduğu için madde molekül yapısına bağlı olarak belli frekanstaki elektromanyetik dalgayı (EM) rahat geçirirken bazılarının geçişine izin vermez. Maddeye özgü olarak emilimin az olduğu frekans aralığına iletim penceresi adı verilir. Çalışmamızda pratik sonuçlar veren SSRAM (Satır Satır Radyatif Aktarım Modeli)’den ortama ve frekansa bağlı emilim katsayıları elde edilmiştir. Bu katsayılar kullanılarak iletim pencereleri gösterilmiştir. Madde yoğunluğunun değiştiği atmosfer katmanlarında iletim pencerelerinin de buna bağlı olarak değiştiği ayrıntılı olarak açıklanmıştır. Gürültünün dar bant genişliğinde düşük olduğu ve bunun sinyal gürültü oranını (SGO) yükselttiği gösterilmiştir. THz dalgalarının emilim duyarlı olduğu gösterilmiş buna bağlı hesaplamalarla bu durum vurgulanmıştır. İçerisinde farklı oranda madde bulunan altı farklı hava modelinden elde edilen kapasiteler, kapasitenin iklimsel etkisini göstermesi açısından değerlendirilmiştir.

References

  • C.-X. Wang, F. Haider, x. Gao, Y Yang ve D Yuan Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130, 2014. https://doi.org/ 10.1109/MCOM.2014.6736752
  • M. Giordani, M. Polese, M. Mezzavilla, S. Rangan ve M. Zorzi, Toward 6G networks: use cases and technologies, IEEE Commun. Mag., 58 (3), 55–61, 2020. https://doi.org/10.1109/MCOM.001.1900411
  • W. Saad, M. Bennis ve M. Chen, A Vision of 6G wireless systems: applications, trends, technologies, and open research problems, IEEE Netw., 34 (3), 134–142, 2020. https://doi.org/10.1109/MNET.001.1900287
  • X. You vd., Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts, Sci. China Inf. Sci., 64(1),110301 , 2020. https://doi.org/10.1007/s11432-020-2955-6
  • T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos ve K. Tserpes, Toward supporting XR services: architecture and enablers, IEEE Internet Things J., 10(4), 3567–3586, 2023. https://doi.org/10.1109/JIOT.2022.3222103
  • A. Ahad, Z. Jiangbina, M. Tahir, I. Shayea, M. A. Sheikh ve F. Rasheed, 6G and Intelligent healthcare: taxonomy, technologies, open ıssues and future research directions, Internet Things, 25, 101068, 2024. https://doi.org/10.1016/j.iot.2024.101068
  • S. Mihai vd., Digital Twins: A survey on enabling technologies, challenges, trends and future prospects, IEEE Commun. Surv. Tutor., 24 (4), 2255–2291, 2022. https://doi.org/10.1109/COMST.2022.3208773
  • S. Ghafoor, N. Boujnah, M. H. Rehmani ve A. Davy, MAC Protocols for terahertz communication: A comprehensive survey, arXiv, Jul. 2020, http://arxiv.org/abs/1904.11441 (erişim tarihi: 07 Şubat 2024).
  • M. Z. Asghar, S. A. Memon ve J. Hämäläinen, Evolution of wireless communication to 6G: potential applications and research directions, Sustainability, 14(10), 6356, 2022. https://doi.org/10.3390/su14106356
  • T. Schneider, Ultrahigh-Bitrate Wireless data communications via THz-Links; possibilities and challenges, J. Infrared Millim. Terahertz Waves, 36 (2), 159–179, 2015. https://doi.org/10.1007/s10762-014-0100-1
  • M. A. Akkaş, Terahertz wireless data communication, Wireless Networks, 25 (1), 145–155, 2019. https://doi.org/10.1007/s11276-017-15
  • H. T. Friis, A Note on a simple transmission formula, Proc. IRE, 34 (5), 254–256, 1946. https://doi.org/10.1109/JRPROC.1946.234568
  • M. W. Shephard vd., Performance of the Line-by-Line Radiative Transfer Model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx, Atmospheric Chem. Phys., 9 (19), 7397–7417, 2009. https://doi.org/10.5194/acp-9-7397-2009
  • S. Mahboob ve L. Liu, Revolutionizing future connectivity: A contemporary survey on AI-empowered satellite-based non-terrestrial networks in 6G, IEEE Commun. Surv. Tutor., 26 (2), 1279–1321, 2024. https://doi.org/10.1109/COMST.2023.3347145.
  • A. I. Alshbatat ve L. Dong, Adaptive MAC Protocol for UAV communication networks using directional antennas, 2010 International Conference on Networking, Sensing and Control (ICNSC), sayfa 598–603, Chicago, IL, USA, 2010. https://doi.org/10.1109/ICNSC.2010.5461589.
  • R. R. Choudhury ve N. H. Vaidya, Deafness: A MAC problem in ad hoc networks when using directional antennas, Proceedings of the 12th IEEE International Conference on Network Protocols, sayfa 283–292, Berlin, Germany, 2004, https://doi.org/10.1109/ICNP.2004.1348118.
  • X.-W. Yao ve J. M. Jornet, TAB-MAC: Assisted beamforming MAC protocol for Terahertz communication networks, Nano Commun. Netw., 7, 2016.
  • N. Abuzainab, M. Alrabeiah, A. Alkhateeb ve Y. E. Sagduyu, Deep Learning for THz drones with flying ıntelligent surfaces: Beam and Handoff Prediction, ArXiv, Feb. 2021, http://arxiv.org/abs/2102.11222 (erişim tarihi: 06 Ekim 2021)
  • Q. Xue vd., A Survey of beam management for mmWave and THz communications towards 6G, IEEE Commun. Surv. Tutor., 2024. https://doi.org/10.1109/COMST.2024.3361991
  • D. F. Swinehart, The beer-lambert law, J. Chem. Educ., 39 (7), 333, 1962. https://doi.org/10.1021/ed039p333
  • J. M. Jornet ve I. F. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band, IEEE Trans. Wirel. Commun., 10 (10), 3211–3221, 2011. https://doi.org/10.1109/TWC.2011.081011.100545
  • A. Saeed, O. Gurbuz ve M. A. Akkaş, Terahertz communications at various atmospheric altitudes, Phys. Commun., 41, 101113, 2020. https://doi.org/10.1016/j.phycom.2020.101113
  • Shannon, C. E. (1948). a mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  • A. Goldsmith, Wireless Communications, Cambridge University Press, 2005, https://doi.org/10.1017/CBO9780511841224.
  • G. Anderson vd., AFGL Atmospheric constituent profiles (0-120km), Mayıs 1986.

Flying things in THz communication

Year 2024, Volume: 13 Issue: 4, 1389 - 1399, 15.10.2024
https://doi.org/10.28948/ngumuh.1441329

Abstract

Our study examines THz channel applications and THz band characteristics. Factors affecting capacity in air-to-ground and air-to-air communication in the THz band, such as antenna power, distance, and environment-dependent absorption loss, have been analyzed. Since the molecular structure of each material varies, some electromagnetic waves pass easily through certain substances at specific frequencies, while others are blocked. The frequency range with minimal absorption for a material is called the transmission window. In our study, absorption coefficients, dependent on the environment and frequency, were obtained using SSRAM (Step-by-Step Radiative Transfer Model). These coefficients illustrate transmission windows. Variations in transmission windows across atmospheric layers with changing material density are explained. It is shown that noise is low in narrow bandwidths, improving the signal-to-noise ratio (SNR). THz waves are sensitive to absorption, and this is emphasized through calculations. Capacities from six weather models, each containing varying material quantities, are evaluated to demonstrate the climatic effect on capacity.

References

  • C.-X. Wang, F. Haider, x. Gao, Y Yang ve D Yuan Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130, 2014. https://doi.org/ 10.1109/MCOM.2014.6736752
  • M. Giordani, M. Polese, M. Mezzavilla, S. Rangan ve M. Zorzi, Toward 6G networks: use cases and technologies, IEEE Commun. Mag., 58 (3), 55–61, 2020. https://doi.org/10.1109/MCOM.001.1900411
  • W. Saad, M. Bennis ve M. Chen, A Vision of 6G wireless systems: applications, trends, technologies, and open research problems, IEEE Netw., 34 (3), 134–142, 2020. https://doi.org/10.1109/MNET.001.1900287
  • X. You vd., Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts, Sci. China Inf. Sci., 64(1),110301 , 2020. https://doi.org/10.1007/s11432-020-2955-6
  • T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos ve K. Tserpes, Toward supporting XR services: architecture and enablers, IEEE Internet Things J., 10(4), 3567–3586, 2023. https://doi.org/10.1109/JIOT.2022.3222103
  • A. Ahad, Z. Jiangbina, M. Tahir, I. Shayea, M. A. Sheikh ve F. Rasheed, 6G and Intelligent healthcare: taxonomy, technologies, open ıssues and future research directions, Internet Things, 25, 101068, 2024. https://doi.org/10.1016/j.iot.2024.101068
  • S. Mihai vd., Digital Twins: A survey on enabling technologies, challenges, trends and future prospects, IEEE Commun. Surv. Tutor., 24 (4), 2255–2291, 2022. https://doi.org/10.1109/COMST.2022.3208773
  • S. Ghafoor, N. Boujnah, M. H. Rehmani ve A. Davy, MAC Protocols for terahertz communication: A comprehensive survey, arXiv, Jul. 2020, http://arxiv.org/abs/1904.11441 (erişim tarihi: 07 Şubat 2024).
  • M. Z. Asghar, S. A. Memon ve J. Hämäläinen, Evolution of wireless communication to 6G: potential applications and research directions, Sustainability, 14(10), 6356, 2022. https://doi.org/10.3390/su14106356
  • T. Schneider, Ultrahigh-Bitrate Wireless data communications via THz-Links; possibilities and challenges, J. Infrared Millim. Terahertz Waves, 36 (2), 159–179, 2015. https://doi.org/10.1007/s10762-014-0100-1
  • M. A. Akkaş, Terahertz wireless data communication, Wireless Networks, 25 (1), 145–155, 2019. https://doi.org/10.1007/s11276-017-15
  • H. T. Friis, A Note on a simple transmission formula, Proc. IRE, 34 (5), 254–256, 1946. https://doi.org/10.1109/JRPROC.1946.234568
  • M. W. Shephard vd., Performance of the Line-by-Line Radiative Transfer Model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx, Atmospheric Chem. Phys., 9 (19), 7397–7417, 2009. https://doi.org/10.5194/acp-9-7397-2009
  • S. Mahboob ve L. Liu, Revolutionizing future connectivity: A contemporary survey on AI-empowered satellite-based non-terrestrial networks in 6G, IEEE Commun. Surv. Tutor., 26 (2), 1279–1321, 2024. https://doi.org/10.1109/COMST.2023.3347145.
  • A. I. Alshbatat ve L. Dong, Adaptive MAC Protocol for UAV communication networks using directional antennas, 2010 International Conference on Networking, Sensing and Control (ICNSC), sayfa 598–603, Chicago, IL, USA, 2010. https://doi.org/10.1109/ICNSC.2010.5461589.
  • R. R. Choudhury ve N. H. Vaidya, Deafness: A MAC problem in ad hoc networks when using directional antennas, Proceedings of the 12th IEEE International Conference on Network Protocols, sayfa 283–292, Berlin, Germany, 2004, https://doi.org/10.1109/ICNP.2004.1348118.
  • X.-W. Yao ve J. M. Jornet, TAB-MAC: Assisted beamforming MAC protocol for Terahertz communication networks, Nano Commun. Netw., 7, 2016.
  • N. Abuzainab, M. Alrabeiah, A. Alkhateeb ve Y. E. Sagduyu, Deep Learning for THz drones with flying ıntelligent surfaces: Beam and Handoff Prediction, ArXiv, Feb. 2021, http://arxiv.org/abs/2102.11222 (erişim tarihi: 06 Ekim 2021)
  • Q. Xue vd., A Survey of beam management for mmWave and THz communications towards 6G, IEEE Commun. Surv. Tutor., 2024. https://doi.org/10.1109/COMST.2024.3361991
  • D. F. Swinehart, The beer-lambert law, J. Chem. Educ., 39 (7), 333, 1962. https://doi.org/10.1021/ed039p333
  • J. M. Jornet ve I. F. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the Terahertz band, IEEE Trans. Wirel. Commun., 10 (10), 3211–3221, 2011. https://doi.org/10.1109/TWC.2011.081011.100545
  • A. Saeed, O. Gurbuz ve M. A. Akkaş, Terahertz communications at various atmospheric altitudes, Phys. Commun., 41, 101113, 2020. https://doi.org/10.1016/j.phycom.2020.101113
  • Shannon, C. E. (1948). a mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  • A. Goldsmith, Wireless Communications, Cambridge University Press, 2005, https://doi.org/10.1017/CBO9780511841224.
  • G. Anderson vd., AFGL Atmospheric constituent profiles (0-120km), Mayıs 1986.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Networking and Communications
Journal Section Research Articles
Authors

Ismail Ersin 0000-0003-0932-5453

Mustafa Akkaş 0000-0003-0185-0464

Orhan Dağdeviren 0000-0001-8789-5086

Early Pub Date October 10, 2024
Publication Date October 15, 2024
Submission Date February 23, 2024
Acceptance Date September 4, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Ersin, I., Akkaş, M., & Dağdeviren, O. (2024). Uçan nesnelerin THz haberleşmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1389-1399. https://doi.org/10.28948/ngumuh.1441329
AMA Ersin I, Akkaş M, Dağdeviren O. Uçan nesnelerin THz haberleşmesi. NOHU J. Eng. Sci. October 2024;13(4):1389-1399. doi:10.28948/ngumuh.1441329
Chicago Ersin, Ismail, Mustafa Akkaş, and Orhan Dağdeviren. “Uçan Nesnelerin THz haberleşmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1389-99. https://doi.org/10.28948/ngumuh.1441329.
EndNote Ersin I, Akkaş M, Dağdeviren O (October 1, 2024) Uçan nesnelerin THz haberleşmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1389–1399.
IEEE I. Ersin, M. Akkaş, and O. Dağdeviren, “Uçan nesnelerin THz haberleşmesi”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1389–1399, 2024, doi: 10.28948/ngumuh.1441329.
ISNAD Ersin, Ismail et al. “Uçan Nesnelerin THz haberleşmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1389-1399. https://doi.org/10.28948/ngumuh.1441329.
JAMA Ersin I, Akkaş M, Dağdeviren O. Uçan nesnelerin THz haberleşmesi. NOHU J. Eng. Sci. 2024;13:1389–1399.
MLA Ersin, Ismail et al. “Uçan Nesnelerin THz haberleşmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1389-9, doi:10.28948/ngumuh.1441329.
Vancouver Ersin I, Akkaş M, Dağdeviren O. Uçan nesnelerin THz haberleşmesi. NOHU J. Eng. Sci. 2024;13(4):1389-9.

download