Research Article
BibTex RIS Cite

Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon

Year 2024, Volume: 13 Issue: 4, 1127 - 1138, 15.10.2024
https://doi.org/10.28948/ngumuh.1449020

Abstract

Günümüzde homojen germanyum (Ge) piramit dizileri güneş hücreleri, fotodedektörler ve yeni nesil yarı iletken lazerler gibi pek çok uygulama alanında karşımıza çıkmaktadır. Germanyum piramit yüzeylerin kullanım alanlarının daha çok geliştirilebilmesi kimyasal ve biyolojik sensör gibi uygulamalarda da aktif olarak kullanılabilmesi için bu yüzeylerin biyolojik moleküllere hızlı cevap verecek şekilde modifiye edilmesi gerekmektedir. Bu çalışmada germanyum piramit yüzeylerinin 3-aminopropiltrietoksisilan (APTES) ile modifiye edilerek biyolojik molekülere açık olacak şekilde işlevselleştirilmesi için basit ve düşük maliyetli bir yöntem araştırılmıştır. APTES'in germanyum yüzeylerinde varlığını belirlemek için APTES ile modifiye edilmiş germanyum yüzeyler floresan BODIPY molekülleri ile etiketlenmiştir. Silanizasyon süreci boyunca, reaksiyon süresi ve reaksiyon sıcaklığının yığınsal germanyum ve piramit dizisine yerleşen APTES molekülleri üzerindeki etkileri araştırılmıştır. Farklı reaksiyonlarla üretilen numuneler, fotolüminesans spektroskopisi (PL) ve floresan yaşam ömrü görüntüleme mikroskobu (FLIM) ile karakterize edilmiştir. APTES moleküllerinin oldukça iyi bir yüzey tutunması sağlayabilmesi için optimum reaksiyon süresi ve işlem sıcaklığı sırasıyla 24 saat ve 60 0C olarak belirlenmiştir. FLIM mikroskobu ile görüntülenen piramitler üzerinde BODIPY moleküllerinin yaşam ömrü 2,4 ns olarak ölçülmüştür. APTES uygulaması elektronik açıdan önemli yarı iletken yüzeylerde çeşitli molekülleri hareketsiz hale getirmek ve yüksek performanslı yeni optoelektronik cihazlar üretmek için sağlam ve güvenilir bir yol sunabilir.

Project Number

114F451 ve 16-M-15

References

  • S. Suresh, Semiconductor Nanomaterials, Methods and Applications: A Review. Nanoscience and Nanotechnology, 3(3), 62, 2013. http://article.sapub.org/10.5923.j.nn.20130303.06.html
  • M.F. Al-Hakkani, Biogenic copper nanoparticles and their applications: A review. SN Appl. Sci. 2, 505, 2020. https://doi.org/10.1007/s42452-020-2279-1.
  • S. Zhao, X. Liu, X. Pi and D. Yang, Light-emitting diodes based on colloidal silicon quantum dots. Journal of Semiconductors, 39, 061008, 2018. https://iopscience.iop.org/article/10.1088/16744926/39/6/061008/meta.
  • B. Das and S.P. McGinnis, Porous silicon pn junction light emitting diodes. Semiconductor Science and Technology, 14, 988, 1999. https://iopscience.iop.org/ article/10.1088/02681242/14/11/308.
  • D.H. Shin, J.H. Kim, J.H. Kim, C. W. Jang, S.W. Seo, H.S. Lee, S. Kim and S.H. Choi, Graphene/porous silicon Schottky-junction solar cells. Journal of Alloys and Compounds, 715, 291, 2017. https://doi.org/10.1016/j.jallcom.2017.05.001.
  • A.K. Katiyar, A.K. Sinha, S. Manna and S.K. Ray, Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates. ACS Applied Materials and Interfaces, 6(17), 15007, 2014. https://doi.org/10.1021/am5028605.
  • S. Kato, Y. Kurokawa, K. Gotoh and T. Soga, Silicon nanowire heterojunction solar cells with an Al2O3 passivation film fabricated by atomic layer deposition. nanoscale research letters, 14(99), 1, 2019. https://doi.org/10.1186/s11671-019-2930-1
  • S. Jeong, E.C. Garnett, S. Wang, Z. Yu, S. Fan, M.L. Brongersma, M.D. McGehee and Y. Cui, Hybrid silicon nanocone–polymer solar cells. nano letters, 12(6), 2971, 2012. https://doi.org/10.1021/nl300713x.
  • X. Wang, Z. Liu, Z. Yang, J. He, X. Yang, T. Yu, P. Gao and J. Ye, Heterojunction hybrid solar cells by formation of conformal contacts between PEDOT:PSS and periodic silicon nanopyramid arrays. Small, 14(15), 1704493, 2018. https://doi.org/10.1002/ smll.201704493.
  • A.Razzaq, V. Depauw, J. Cho, H.S. Radhakrishnan, I. Gordon, J. Szlufcik, Y. Abdulraheem and J.Poortmans, Periodic inverse nanopyramid gratings for light management in silicon heterojunction devices and comparison with random pyramid texturing. Solar Energy Materials and Solar Cells, 206, 110263, 2020. https://doi.org/10.1016/j.solmat.2019.110263.
  • A. Gaucher, A.Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P.R. Cabarrocas, S. Collin, Ultrathin epitaxial silicon solar cells with ınverted nanopyramid arrays for efficient light trapping. Nano Letters, 16(9), 5358, 2016. https://doi.org/10.1021/acs.nanolett.6b01240.
  • B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia and M. J. Meyyappan. One-dimensional germanium nanowires for future electronics. Journal of Cluster Science, 17, 579, 2006. https://doi.org/10.1007/ s10876-006-0081-x.
  • H.Gerung,T.J.Boyle,L.J.Tribby,S.D.Bunge,C.J.Brinker and S.M.Han, Solution synthesis of germanium nanowires using a Ge2+alkoxide precursor. Journal of American Chemical Society,128, 5244, 2006. https://doi.org/10.1021/ja058524s.
  • Z. Hu, S. Zhang, C. Zhang and G. Cui, High performance germanium-based anode materials, Coordination Chemistry Reviews, 326, 34, 2016. http://dx.doi.org/10.1016/j.ccr.2016.08.002.
  • S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu and Z. Lin, Germanium-Based Nanomaterials for Rechargeable Batteries, Angew. Chem. Int. Ed. 55, 7898, 2016. https://doi.org/10.1002/anie.201509651.
  • D. Wang, Y. L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordon and H. Da, Surface chemistry and electrical properties of germanium nanowires, Journal of American Chemical Society,126, 11602, 2004. https://doi.org/10.1021/ja047435x.
  • P. Staudinger, M. Sistani, J. Greil, E. Bertagnolli and A. Lugstein, Ultrascaled germanium nanowires for highly sensitive photodetection at the quantum ballistic limit. Nano Letters, 18, 5030, 2018. https://doi.org/10.1021/acs.nanolett.8b01845.
  • F.T. Pilon, A. Lyasota, Y.M. Niquet, V. Reboud, V. Calvo, N. Pauc, J. Widiez, C. Bonzon, J.M. Hartmann, A. Chelnokov, J. Faist and H. Sigg, Lasing in strained germanium microbridges. Nature Communications, 10, 2724, 2019. https://doi.org/10.1038/s41467-019-10655-6.
  • M. Grydlik, F. Hackl, H. Groiss, M. Glaser, A. Halilovic, T. Fromherz, W. Jantsch, F. Schaffler and M. Brehm, Lasing from Glassy Ge Quantum Dots in Crystalline Si. ACS Photonics 3, 298, 2016. https://doi.org/10.1021/acsphotonics.5b00671
  • S.K. Ray,A. K. Katiyar and A.K. Raychaudhuri, One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications-a review. Nanotechnology, 28(9), 092001, 2017. https://doi.org/10.1088/1361-6528/aa565c.
  • D.S. Luca, O. Giorgia, A. Jussara, B. Nicola, P. Gennaro, M. Luciano, R. Ivo, T. Monica and R. Ilaria, Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J. R. Soc. Interface, 10, 83, 2013. http://doi.org/10.1098/rsif.2013.0160.
  • N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert and S.Boujday, Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir, 28(1), 656, 2012. https://doi.org/10.1021/la2036778.
  • C. Weigel and R. Kellner, FTIR-ATR-spectroscopic investigation of the silanization of germanium surfaces with 3-aminopropyltriethoxysilane. Z. Anal. Chem. 335, 663, 1989. https://doi.org/10.1007/BF01204067.
  • D. Nyamjav and R. C. Holz,Direct patterning of silanized-biomolecules on semiconductor surfaces. Langmuir, 26(23), 18300, 2010. https://doi.org/10.1021/la103297p.
  • Z.-H. Wang and G. Jin, Covalent immobilization of proteins for the biosensor based on imaging ellipsometry. Journal of Immunological Methods, 285(2), 237, 2004. https://doi.org/10.1016/ j.jim.2003.12.002.
  • M. Sypabekova, A. Hagemann, D. Rho and S. Kim, 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. Biosensors, 13, 36, 2023. https://doi.org/10.3390/bios13010036.
  • S. Laumier, T. Farrow, H. Zalinge, L. Seravalli, M. Bosi, and I. Sandall, Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega, 7, 35288, 2022. https://doi.org/10.1021/ acsomega.2c04775.
  • S.K. Vashist, E. Lam, S. Hrapovic, K. B. Male and H. T. Luong, Immobilization of Antibodies and enzymes on 3 aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chemical Reviews, 114(21), 11083, 2014. https://doi.org/10.1021/cr5000943.
  • J. Geltmeyer, G. Vancoillie, I. Steyaert, B. Breyne, G. Cousins, K. Lava, R. Hoogenboom, K. D. Buysser and K. D. Clerck, dye modifi cation of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing. Advanced Functional Materials, 26, 5987, 2016. https://doi.org/10.1002/adfm.201602351.
  • A. Lobnika, I. Oehmea, I. Murkovica, O. S. Wolfbeis, pH optical sensors based on sol-gels: Chemical doping versus covalent immobilization. Analytica Chimica Acta, 367, 159, 1998. https://doi.org/10.1016/S0003-2670(97)00708-3.
  • G. J. Mohr, H. Müller, B. Bussemer, A. Stark, T. Carofiglio, S. Trupp, R. Heuermann,T. Henkel, D. Escudero, L. González, Design of acidochromic dyes for facile preparation of pH sensor layers. Anal Bioanal Chem, 392, 1411, 2008. https://doi.org/10.1007/ s00216-008-2428-7.
  • S. Trupp, M. Alberti, T. Carofiglio, E. Lubian, H. Lehmann, R. Heuermann, E. Yacoub-George, K. Bock, G. J. Mohr, Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sensors and Actuators B, 150 206, 2010. https://doi.org/10.1016/j.snb.2010.07.015.
  • D. Meroni, L. L. Presti, G. D. Liberto, M. Ceotto, R. G. Acres, K. C. Prince, R. Bellani, G. Soliveri and S. Ardizzone, A Close Look at the Structure of the TiO2 APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 121(1), 430, 2017. https://doi.org/10.1021/ acs.jpcc.6b10720.
  • H. Hafeez, D. K. Choi, C. M. Lee, P. J. Jesuraj, D. H. Kim, A. Song, K. B. Chung, M. Song, J. F. Ma, C.-S. Kim and S.Y. Ryu, Replacement of n-type layers with a non-toxic APTES interfacial layer to improve the performance of amorphous Si thin-film solar cells. RSC Advances, 9, 7536, 2019. https://doi.org/ 10.1039/C8RA07409G.
  • N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert and S. Boujday, Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability and Influence on Protein Adsorption. Langmuir, 28, 656, 2012. https://doi.org/10.1021/la2036778.
  • P. Saengdee, W. Chaisriratanakul, W. Bunjongpru, W. Sripumkhai, A. Srisuwan, W. Jeamsaksiri, C. Hruanun, A. Poyai and C. Promptmas, Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization. Biosensors and Bioelectronics, 67, 134, 2015. http://dx.doi.org/10.1016/j.bios.2014.07.057.
  • N. Majoul, S. Aouida and B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science, 331, 388, 2015. https://doi.org/10.1016/j.apsusc.2015.01.107.
  • M. Hiraoui, M. Guendouz, N. Lorrain, A. Moadhen, L. Haji and M. Oueslati, Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications. Materials Chemistry and Physics, 128, 151, 2011. https://doi.org/10.1016/ j.matchemphys.2011.02.052.
  • E. Makila, L.M. Bimbo, M. Kaasalainen, B. Herranz, A.J. Airaksinen, M. Heinonen, E. Kukk, J. Hirvonen, H.A. Santos and J. Salonen, Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28, 14045, 2012. https://doi.org/10.1021/la303091k.
  • S.G. Coombs, S. Khodjaniyazova and F.V. Bright, Exploiting the 3-Aminopropyltriethoxysilane (APTES) autocatalytic nature to create bioconjugated microarrays on hydrogen-passivated porous silicon. Talanta, 177, 26, 2018. https://doi.org/10.1016/ j.talanta.2017.09.038.
  • L. De Stefano, G. Oliviero, J. Amato, N. Borbone, G. Piccialli, L. Mayol, I. Rendina, M. Terracciano and I. Rea, Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J R Soc Interface, 10, 20130160, 2013. http://dx.doi.org/10.1098/rsif.2013.0160.
  • B. Qiao, T.J. Wang, H. Gao and Y. Jin, High density silanization of nano-silica particles using γ-aminopropyltriethoxysilane (APTES). Applied Surface Science, 351, 646, 2015. https://doi.org/10.1016/ j.apsusc.2015.05.174.
  • A. Miranda, L. Martínez and P. A. Beule, Facile synthesis of an aminopropylsilane layer on Si/SiO2 substrates using ethanol as APTES solvent. MethodsX, 7, 100931, 2020. https://doi.org/10.1016/ j.mex.2020.100931.
  • E.J. Cueto-Diaz, A. Castro-Muniz, F. Suarez-Garcia, S. Galvez-Martinez, M.C. Torquemada-Vico, M.P. Valles-Gonzalez and E. Mateo-Marti, APTES-based silica nanoparticles as a potential modifier for the selective sequestration of CO2 gas molecules. Nanomaterials, 11, 2893, 2021. https://doi.org/10.3390/nano11112893.
  • S. Ahoulou, E. Perret and J.-M. Nedelec, Functionalization and characterization of silicon nanowires for sensing applications: A review. Nanomaterials, 11, 999, 2021. https://doi.org/10.3390/nano11040999.
  • Y. Liang, J. Huang, P. Zang, J. Kim and W. Hu, Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response. Applied Surface Science, 322, 202, 2014. https://doi.org/10.1016/j.apsusc.2014.10.097.
  • S. Mirsian, A.Khodadadian, M. Hedayati, A.Manzour-ol-Ajdad, R. Kalantarinejad and C. Heitzinger, A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosensors and Bioelectronics, 142, 111527, 2019. https://doi.org/10.1016/ j.bios.2019.111527.
  • S. Laumier, T. Farrow, H.Zalinge, L.Seravalli, M. Bosi and I. Sandall, Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega,7(39), 35288, 2022. https://doi.org/ 10.1021/acsomega.2c04775.
  • Q. Han, Y. Fu, L.Jin, J. Zhao, Z. Xu, F. Fang, J. Gao, W. Yu, Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Res. 8, 2216, 2015. https://doi.org/10.1007/s12274-015-0731-0K.
  • Y. Kim, N. Lam, K. Kim, W. Park, J. Lee, Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition. Sci. Rep. 7, 42693, 2017. https://doi.org/10.1038/srep42693.
  • S. An, Y. Liao, S. Shin, M. Kim, Black germanium photodetector exceeds external quantum efficiency of 160%. Adv. Mater. Technol. 7, 2100912, 2022. https://doi.org/10.1002/admt.202100912.
  • B. Son, S. Shin, Y. Jin, Y. Liao, Z. Zhao, J. Jeong, Q. J. Wang, X. Wang, C. S. Tan, M. Kim, A heavily doped germanium pyramid array for tunable optical antireflection in the broadband mid-infrared range. J. Mater. Chem. C, 10, 5797, 2022. https://doi.org/10.1039/D2TC00141A.
  • S. Acikgoz, H. Yungevis, E. Özünal, A. Sahin, Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system. J. Mater. Sci., 52, 13149, 2017. https://doi.org/10.1007/s10853-017-1434-6.
  • S.Acikgoz, H. Yungevis, Precisely size-controlled fabrication of germanium pyramid array as an effective light-trapping material for photonic devices. Appl. Phys. A 127, 944, 2021. https://doi.org/10.1007/ s00339-021-05108-1S.
  • Açıkgöz ve H. Yungevis, GaAs yarı iletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 826, 2022. https://doi.org/10.28948/ngumuh.1082122.
  • V. Rozyyev, J.G. Murphy, E. Barry, A.U. Mane, S.J. Sibener, J.W. Elam, Vapor-phase grafting of a model aminosilane compound to Al2O3, ZnO, and TiO2 surfaces prepared by atomic layer deposition. Applied Surface Science, 562, 149996, 2021. https://doi.org/10.1016/j.apsusc.2021.149996.
  • I.Berktas, A.N. Ghafar, P. Fontana, A. Caputcu, Y. Menceloglu and B.S. Okan, Facile Synthesis of Graphene from Waste Tire/Silica Hybrid Additives and Optimization Study for the Fabrication of Thermally Enhanced Cement Grouts. Molecules, 25, 886, 2020. https://doi.org/10.3390/molecules25040886.
  • L. Munguía-Cortés, I. Pérez-Hermosillo, R. Ojeda-López, J.M. Esparza-Schulz, C. Felipe-Mendoza, A. Cervantes-Uribe and A.Domínguez-Ortiz, APTES-Functionalization of SBA-15 Using Ethanol or Toluene: Textural Characterization and Sorption Performance of Carbon Dioxide. J. Mex. Chem. Soc., 61(4), 273, 2017. https://doi.org/ 10.29356/jmcs.v61i4.457.
  • Z. Xu, Q. Liu and J.A. Finch, Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles:I. Direct silanation. Applied Surface Science, 120, 269, 1997. https://doi.org/10.1016/S0169-4332(97)00234-1.
  • M. Terracciano, I. Rea, J. Politi, L. De Stefano, Optical characterization of aminosilane-modified silicon dioxide surface for biosensing. J. Europ. Opt. Soc. Rap. Public. 8, 13075, 2013. http://dx.doi.org/ 10.2971/jeos.2013.13075.
  • P. Saengdee, C. Promptmas, S. Thanapitak, A. Srisuwan, A. Pankiew, N. Thornyanadacha, W. Chaisriratanakul, E. Chaowicharat, W. Jeamsaksiri, Optimization of 3-aminopropyltriethoxysilane functionalization on silicon nitride surface for biomolecule immobilization. Talanta 207, 120305, 2020. https://doi.org/10.1016/j.talanta.2019.120305.
  • I. J. Bruce and T. Sen, Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir, 21, 7029, 2005. https://doi.org/10.1021/la050553t.
  • J. A. Howarter and J.P. Youngblood, Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 22, 11142, 2006. https://doi.org/ 10.1021/la061240g.
  • Y. Q. Gao and R. A. Marcus, On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model. J. Chem. Phys., 113, 6351, 2000. https://doi.org/10.1063/1.1309528.
  • S. L. Shinde, T. D. Dao, S. Ishii, L. Nien, K. K. Nanda, T. Nagao, White light emission from black germanium. ACS Photonics, 4(7), 1722, 2017. https://doi.org/10.1021/acsphotonics.7b00214.

Efficient surface silanization and fluorescent labelling of germanium pyramid array: Optimization and characterization

Year 2024, Volume: 13 Issue: 4, 1127 - 1138, 15.10.2024
https://doi.org/10.28948/ngumuh.1449020

Abstract

Nowadays homogeneous germanium (Ge) pyramid arrays are emerging in many application areas such as solar cells, photodetectors and next-generation semiconductor lasers. To enhance the application areas of germanium pyramid surfaces, particularly in chemical and biological sensors, these surfaces need to be modified to rapidly respond to biological molecules. In this work, a simple and cost-effective method was investigated to modify germanium pyramid surfaces with 3-aminopropyltriethoxysilane (APTES), enabling them to be functionalized for interaction with biological molecules. In order to establish the presence of APTES on germanium surfaces, APTES modified surfaces were labeled with fluorescent BODIPY molecules. During the silanization process, the effects of reaction time and reaction temperature were studied for the attachment of APTES on bulk germanium and pyramid array. The products of different reactions were characterized using photoluminescence spectroscopy (PL) and fluorescence lifetime imaging microscopy (FLIM). The optimum reaction time and processing temperature for a reasonably good surface coverage by APTES molecules were determined as 24 hour and 60 0C, respectively. The fluorescence lifetime of BODIPY molecules on pyramids monitored with FLIM microscope was measured as 2.4 ns. APTES treatment can offer a robust and reliable pathway to immobilize various molecules on electronically important semiconductor surfaces and fabricate new optoelectronic devices with high performance.

Project Number

114F451 ve 16-M-15

References

  • S. Suresh, Semiconductor Nanomaterials, Methods and Applications: A Review. Nanoscience and Nanotechnology, 3(3), 62, 2013. http://article.sapub.org/10.5923.j.nn.20130303.06.html
  • M.F. Al-Hakkani, Biogenic copper nanoparticles and their applications: A review. SN Appl. Sci. 2, 505, 2020. https://doi.org/10.1007/s42452-020-2279-1.
  • S. Zhao, X. Liu, X. Pi and D. Yang, Light-emitting diodes based on colloidal silicon quantum dots. Journal of Semiconductors, 39, 061008, 2018. https://iopscience.iop.org/article/10.1088/16744926/39/6/061008/meta.
  • B. Das and S.P. McGinnis, Porous silicon pn junction light emitting diodes. Semiconductor Science and Technology, 14, 988, 1999. https://iopscience.iop.org/ article/10.1088/02681242/14/11/308.
  • D.H. Shin, J.H. Kim, J.H. Kim, C. W. Jang, S.W. Seo, H.S. Lee, S. Kim and S.H. Choi, Graphene/porous silicon Schottky-junction solar cells. Journal of Alloys and Compounds, 715, 291, 2017. https://doi.org/10.1016/j.jallcom.2017.05.001.
  • A.K. Katiyar, A.K. Sinha, S. Manna and S.K. Ray, Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates. ACS Applied Materials and Interfaces, 6(17), 15007, 2014. https://doi.org/10.1021/am5028605.
  • S. Kato, Y. Kurokawa, K. Gotoh and T. Soga, Silicon nanowire heterojunction solar cells with an Al2O3 passivation film fabricated by atomic layer deposition. nanoscale research letters, 14(99), 1, 2019. https://doi.org/10.1186/s11671-019-2930-1
  • S. Jeong, E.C. Garnett, S. Wang, Z. Yu, S. Fan, M.L. Brongersma, M.D. McGehee and Y. Cui, Hybrid silicon nanocone–polymer solar cells. nano letters, 12(6), 2971, 2012. https://doi.org/10.1021/nl300713x.
  • X. Wang, Z. Liu, Z. Yang, J. He, X. Yang, T. Yu, P. Gao and J. Ye, Heterojunction hybrid solar cells by formation of conformal contacts between PEDOT:PSS and periodic silicon nanopyramid arrays. Small, 14(15), 1704493, 2018. https://doi.org/10.1002/ smll.201704493.
  • A.Razzaq, V. Depauw, J. Cho, H.S. Radhakrishnan, I. Gordon, J. Szlufcik, Y. Abdulraheem and J.Poortmans, Periodic inverse nanopyramid gratings for light management in silicon heterojunction devices and comparison with random pyramid texturing. Solar Energy Materials and Solar Cells, 206, 110263, 2020. https://doi.org/10.1016/j.solmat.2019.110263.
  • A. Gaucher, A.Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P.R. Cabarrocas, S. Collin, Ultrathin epitaxial silicon solar cells with ınverted nanopyramid arrays for efficient light trapping. Nano Letters, 16(9), 5358, 2016. https://doi.org/10.1021/acs.nanolett.6b01240.
  • B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia and M. J. Meyyappan. One-dimensional germanium nanowires for future electronics. Journal of Cluster Science, 17, 579, 2006. https://doi.org/10.1007/ s10876-006-0081-x.
  • H.Gerung,T.J.Boyle,L.J.Tribby,S.D.Bunge,C.J.Brinker and S.M.Han, Solution synthesis of germanium nanowires using a Ge2+alkoxide precursor. Journal of American Chemical Society,128, 5244, 2006. https://doi.org/10.1021/ja058524s.
  • Z. Hu, S. Zhang, C. Zhang and G. Cui, High performance germanium-based anode materials, Coordination Chemistry Reviews, 326, 34, 2016. http://dx.doi.org/10.1016/j.ccr.2016.08.002.
  • S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu and Z. Lin, Germanium-Based Nanomaterials for Rechargeable Batteries, Angew. Chem. Int. Ed. 55, 7898, 2016. https://doi.org/10.1002/anie.201509651.
  • D. Wang, Y. L. Chang, Q. Wang, J. Cao, D.B. Farmer, R.G. Gordon and H. Da, Surface chemistry and electrical properties of germanium nanowires, Journal of American Chemical Society,126, 11602, 2004. https://doi.org/10.1021/ja047435x.
  • P. Staudinger, M. Sistani, J. Greil, E. Bertagnolli and A. Lugstein, Ultrascaled germanium nanowires for highly sensitive photodetection at the quantum ballistic limit. Nano Letters, 18, 5030, 2018. https://doi.org/10.1021/acs.nanolett.8b01845.
  • F.T. Pilon, A. Lyasota, Y.M. Niquet, V. Reboud, V. Calvo, N. Pauc, J. Widiez, C. Bonzon, J.M. Hartmann, A. Chelnokov, J. Faist and H. Sigg, Lasing in strained germanium microbridges. Nature Communications, 10, 2724, 2019. https://doi.org/10.1038/s41467-019-10655-6.
  • M. Grydlik, F. Hackl, H. Groiss, M. Glaser, A. Halilovic, T. Fromherz, W. Jantsch, F. Schaffler and M. Brehm, Lasing from Glassy Ge Quantum Dots in Crystalline Si. ACS Photonics 3, 298, 2016. https://doi.org/10.1021/acsphotonics.5b00671
  • S.K. Ray,A. K. Katiyar and A.K. Raychaudhuri, One-dimensional Si/Ge nanowires and their heterostructures for multifunctional applications-a review. Nanotechnology, 28(9), 092001, 2017. https://doi.org/10.1088/1361-6528/aa565c.
  • D.S. Luca, O. Giorgia, A. Jussara, B. Nicola, P. Gennaro, M. Luciano, R. Ivo, T. Monica and R. Ilaria, Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J. R. Soc. Interface, 10, 83, 2013. http://doi.org/10.1098/rsif.2013.0160.
  • N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert and S.Boujday, Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability, and Influence on Protein Adsorption. Langmuir, 28(1), 656, 2012. https://doi.org/10.1021/la2036778.
  • C. Weigel and R. Kellner, FTIR-ATR-spectroscopic investigation of the silanization of germanium surfaces with 3-aminopropyltriethoxysilane. Z. Anal. Chem. 335, 663, 1989. https://doi.org/10.1007/BF01204067.
  • D. Nyamjav and R. C. Holz,Direct patterning of silanized-biomolecules on semiconductor surfaces. Langmuir, 26(23), 18300, 2010. https://doi.org/10.1021/la103297p.
  • Z.-H. Wang and G. Jin, Covalent immobilization of proteins for the biosensor based on imaging ellipsometry. Journal of Immunological Methods, 285(2), 237, 2004. https://doi.org/10.1016/ j.jim.2003.12.002.
  • M. Sypabekova, A. Hagemann, D. Rho and S. Kim, 3-Aminopropyltriethoxysilane (APTES) Deposition Methods on Oxide Surfaces in Solution and Vapor Phases for Biosensing Applications. Biosensors, 13, 36, 2023. https://doi.org/10.3390/bios13010036.
  • S. Laumier, T. Farrow, H. Zalinge, L. Seravalli, M. Bosi, and I. Sandall, Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega, 7, 35288, 2022. https://doi.org/10.1021/ acsomega.2c04775.
  • S.K. Vashist, E. Lam, S. Hrapovic, K. B. Male and H. T. Luong, Immobilization of Antibodies and enzymes on 3 aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chemical Reviews, 114(21), 11083, 2014. https://doi.org/10.1021/cr5000943.
  • J. Geltmeyer, G. Vancoillie, I. Steyaert, B. Breyne, G. Cousins, K. Lava, R. Hoogenboom, K. D. Buysser and K. D. Clerck, dye modifi cation of nanofibrous silicon oxide membranes for colorimetric HCl and NH3 sensing. Advanced Functional Materials, 26, 5987, 2016. https://doi.org/10.1002/adfm.201602351.
  • A. Lobnika, I. Oehmea, I. Murkovica, O. S. Wolfbeis, pH optical sensors based on sol-gels: Chemical doping versus covalent immobilization. Analytica Chimica Acta, 367, 159, 1998. https://doi.org/10.1016/S0003-2670(97)00708-3.
  • G. J. Mohr, H. Müller, B. Bussemer, A. Stark, T. Carofiglio, S. Trupp, R. Heuermann,T. Henkel, D. Escudero, L. González, Design of acidochromic dyes for facile preparation of pH sensor layers. Anal Bioanal Chem, 392, 1411, 2008. https://doi.org/10.1007/ s00216-008-2428-7.
  • S. Trupp, M. Alberti, T. Carofiglio, E. Lubian, H. Lehmann, R. Heuermann, E. Yacoub-George, K. Bock, G. J. Mohr, Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sensors and Actuators B, 150 206, 2010. https://doi.org/10.1016/j.snb.2010.07.015.
  • D. Meroni, L. L. Presti, G. D. Liberto, M. Ceotto, R. G. Acres, K. C. Prince, R. Bellani, G. Soliveri and S. Ardizzone, A Close Look at the Structure of the TiO2 APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 121(1), 430, 2017. https://doi.org/10.1021/ acs.jpcc.6b10720.
  • H. Hafeez, D. K. Choi, C. M. Lee, P. J. Jesuraj, D. H. Kim, A. Song, K. B. Chung, M. Song, J. F. Ma, C.-S. Kim and S.Y. Ryu, Replacement of n-type layers with a non-toxic APTES interfacial layer to improve the performance of amorphous Si thin-film solar cells. RSC Advances, 9, 7536, 2019. https://doi.org/ 10.1039/C8RA07409G.
  • N. Aissaoui, L. Bergaoui, J. Landoulsi, J.-F. Lambert and S. Boujday, Silane Layers on Silicon Surfaces: Mechanism of Interaction, Stability and Influence on Protein Adsorption. Langmuir, 28, 656, 2012. https://doi.org/10.1021/la2036778.
  • P. Saengdee, W. Chaisriratanakul, W. Bunjongpru, W. Sripumkhai, A. Srisuwan, W. Jeamsaksiri, C. Hruanun, A. Poyai and C. Promptmas, Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization. Biosensors and Bioelectronics, 67, 134, 2015. http://dx.doi.org/10.1016/j.bios.2014.07.057.
  • N. Majoul, S. Aouida and B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science, 331, 388, 2015. https://doi.org/10.1016/j.apsusc.2015.01.107.
  • M. Hiraoui, M. Guendouz, N. Lorrain, A. Moadhen, L. Haji and M. Oueslati, Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications. Materials Chemistry and Physics, 128, 151, 2011. https://doi.org/10.1016/ j.matchemphys.2011.02.052.
  • E. Makila, L.M. Bimbo, M. Kaasalainen, B. Herranz, A.J. Airaksinen, M. Heinonen, E. Kukk, J. Hirvonen, H.A. Santos and J. Salonen, Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28, 14045, 2012. https://doi.org/10.1021/la303091k.
  • S.G. Coombs, S. Khodjaniyazova and F.V. Bright, Exploiting the 3-Aminopropyltriethoxysilane (APTES) autocatalytic nature to create bioconjugated microarrays on hydrogen-passivated porous silicon. Talanta, 177, 26, 2018. https://doi.org/10.1016/ j.talanta.2017.09.038.
  • L. De Stefano, G. Oliviero, J. Amato, N. Borbone, G. Piccialli, L. Mayol, I. Rendina, M. Terracciano and I. Rea, Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. J R Soc Interface, 10, 20130160, 2013. http://dx.doi.org/10.1098/rsif.2013.0160.
  • B. Qiao, T.J. Wang, H. Gao and Y. Jin, High density silanization of nano-silica particles using γ-aminopropyltriethoxysilane (APTES). Applied Surface Science, 351, 646, 2015. https://doi.org/10.1016/ j.apsusc.2015.05.174.
  • A. Miranda, L. Martínez and P. A. Beule, Facile synthesis of an aminopropylsilane layer on Si/SiO2 substrates using ethanol as APTES solvent. MethodsX, 7, 100931, 2020. https://doi.org/10.1016/ j.mex.2020.100931.
  • E.J. Cueto-Diaz, A. Castro-Muniz, F. Suarez-Garcia, S. Galvez-Martinez, M.C. Torquemada-Vico, M.P. Valles-Gonzalez and E. Mateo-Marti, APTES-based silica nanoparticles as a potential modifier for the selective sequestration of CO2 gas molecules. Nanomaterials, 11, 2893, 2021. https://doi.org/10.3390/nano11112893.
  • S. Ahoulou, E. Perret and J.-M. Nedelec, Functionalization and characterization of silicon nanowires for sensing applications: A review. Nanomaterials, 11, 999, 2021. https://doi.org/10.3390/nano11040999.
  • Y. Liang, J. Huang, P. Zang, J. Kim and W. Hu, Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response. Applied Surface Science, 322, 202, 2014. https://doi.org/10.1016/j.apsusc.2014.10.097.
  • S. Mirsian, A.Khodadadian, M. Hedayati, A.Manzour-ol-Ajdad, R. Kalantarinejad and C. Heitzinger, A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosensors and Bioelectronics, 142, 111527, 2019. https://doi.org/10.1016/ j.bios.2019.111527.
  • S. Laumier, T. Farrow, H.Zalinge, L.Seravalli, M. Bosi and I. Sandall, Selection and functionalization of germanium nanowires for bio-sensing. ACS Omega,7(39), 35288, 2022. https://doi.org/ 10.1021/acsomega.2c04775.
  • Q. Han, Y. Fu, L.Jin, J. Zhao, Z. Xu, F. Fang, J. Gao, W. Yu, Germanium nanopyramid arrays showing near-100% absorption in the visible regime. Nano Res. 8, 2216, 2015. https://doi.org/10.1007/s12274-015-0731-0K.
  • Y. Kim, N. Lam, K. Kim, W. Park, J. Lee, Ge nanopillar solar cells epitaxially grown by metalorganic chemical vapor deposition. Sci. Rep. 7, 42693, 2017. https://doi.org/10.1038/srep42693.
  • S. An, Y. Liao, S. Shin, M. Kim, Black germanium photodetector exceeds external quantum efficiency of 160%. Adv. Mater. Technol. 7, 2100912, 2022. https://doi.org/10.1002/admt.202100912.
  • B. Son, S. Shin, Y. Jin, Y. Liao, Z. Zhao, J. Jeong, Q. J. Wang, X. Wang, C. S. Tan, M. Kim, A heavily doped germanium pyramid array for tunable optical antireflection in the broadband mid-infrared range. J. Mater. Chem. C, 10, 5797, 2022. https://doi.org/10.1039/D2TC00141A.
  • S. Acikgoz, H. Yungevis, E. Özünal, A. Sahin, Low-cost, fast and easy production of germanium nanostructures and interfacial electron transfer dynamics of BODIPY–germanium nanostructure system. J. Mater. Sci., 52, 13149, 2017. https://doi.org/10.1007/s10853-017-1434-6.
  • S.Acikgoz, H. Yungevis, Precisely size-controlled fabrication of germanium pyramid array as an effective light-trapping material for photonic devices. Appl. Phys. A 127, 944, 2021. https://doi.org/10.1007/ s00339-021-05108-1S.
  • Açıkgöz ve H. Yungevis, GaAs yarı iletken yüzeyinde mikro yarıkların üretilmesi ve FLIM tekniği ile yüzey karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(3), 826, 2022. https://doi.org/10.28948/ngumuh.1082122.
  • V. Rozyyev, J.G. Murphy, E. Barry, A.U. Mane, S.J. Sibener, J.W. Elam, Vapor-phase grafting of a model aminosilane compound to Al2O3, ZnO, and TiO2 surfaces prepared by atomic layer deposition. Applied Surface Science, 562, 149996, 2021. https://doi.org/10.1016/j.apsusc.2021.149996.
  • I.Berktas, A.N. Ghafar, P. Fontana, A. Caputcu, Y. Menceloglu and B.S. Okan, Facile Synthesis of Graphene from Waste Tire/Silica Hybrid Additives and Optimization Study for the Fabrication of Thermally Enhanced Cement Grouts. Molecules, 25, 886, 2020. https://doi.org/10.3390/molecules25040886.
  • L. Munguía-Cortés, I. Pérez-Hermosillo, R. Ojeda-López, J.M. Esparza-Schulz, C. Felipe-Mendoza, A. Cervantes-Uribe and A.Domínguez-Ortiz, APTES-Functionalization of SBA-15 Using Ethanol or Toluene: Textural Characterization and Sorption Performance of Carbon Dioxide. J. Mex. Chem. Soc., 61(4), 273, 2017. https://doi.org/ 10.29356/jmcs.v61i4.457.
  • Z. Xu, Q. Liu and J.A. Finch, Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles:I. Direct silanation. Applied Surface Science, 120, 269, 1997. https://doi.org/10.1016/S0169-4332(97)00234-1.
  • M. Terracciano, I. Rea, J. Politi, L. De Stefano, Optical characterization of aminosilane-modified silicon dioxide surface for biosensing. J. Europ. Opt. Soc. Rap. Public. 8, 13075, 2013. http://dx.doi.org/ 10.2971/jeos.2013.13075.
  • P. Saengdee, C. Promptmas, S. Thanapitak, A. Srisuwan, A. Pankiew, N. Thornyanadacha, W. Chaisriratanakul, E. Chaowicharat, W. Jeamsaksiri, Optimization of 3-aminopropyltriethoxysilane functionalization on silicon nitride surface for biomolecule immobilization. Talanta 207, 120305, 2020. https://doi.org/10.1016/j.talanta.2019.120305.
  • I. J. Bruce and T. Sen, Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir, 21, 7029, 2005. https://doi.org/10.1021/la050553t.
  • J. A. Howarter and J.P. Youngblood, Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 22, 11142, 2006. https://doi.org/ 10.1021/la061240g.
  • Y. Q. Gao and R. A. Marcus, On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model. J. Chem. Phys., 113, 6351, 2000. https://doi.org/10.1063/1.1309528.
  • S. L. Shinde, T. D. Dao, S. Ishii, L. Nien, K. K. Nanda, T. Nagao, White light emission from black germanium. ACS Photonics, 4(7), 1722, 2017. https://doi.org/10.1021/acsphotonics.7b00214.
There are 65 citations in total.

Details

Primary Language Turkish
Subjects Electronic, Optics and Magnetic Materials, Material Characterization
Journal Section Research Articles
Authors

Sabriye Açıkgöz 0000-0002-2020-7565

Hasan Yüngeviş 0000-0001-5451-3379

Ayşegül Şahin 0000-0002-3238-6409

Emin Özünal 0000-0002-3389-9062

Project Number 114F451 ve 16-M-15
Early Pub Date September 4, 2024
Publication Date October 15, 2024
Submission Date March 12, 2024
Acceptance Date July 15, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Açıkgöz, S., Yüngeviş, H., Şahin, A., Özünal, E. (2024). Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1127-1138. https://doi.org/10.28948/ngumuh.1449020
AMA Açıkgöz S, Yüngeviş H, Şahin A, Özünal E. Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon. NOHU J. Eng. Sci. October 2024;13(4):1127-1138. doi:10.28948/ngumuh.1449020
Chicago Açıkgöz, Sabriye, Hasan Yüngeviş, Ayşegül Şahin, and Emin Özünal. “Germanyum Piramit Dizisinin Etkin yüzey Silanizasyonu Ve Floresan Etiketlenmesi: Optimizasyon Ve Karakterizasyon”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1127-38. https://doi.org/10.28948/ngumuh.1449020.
EndNote Açıkgöz S, Yüngeviş H, Şahin A, Özünal E (October 1, 2024) Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1127–1138.
IEEE S. Açıkgöz, H. Yüngeviş, A. Şahin, and E. Özünal, “Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1127–1138, 2024, doi: 10.28948/ngumuh.1449020.
ISNAD Açıkgöz, Sabriye et al. “Germanyum Piramit Dizisinin Etkin yüzey Silanizasyonu Ve Floresan Etiketlenmesi: Optimizasyon Ve Karakterizasyon”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1127-1138. https://doi.org/10.28948/ngumuh.1449020.
JAMA Açıkgöz S, Yüngeviş H, Şahin A, Özünal E. Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon. NOHU J. Eng. Sci. 2024;13:1127–1138.
MLA Açıkgöz, Sabriye et al. “Germanyum Piramit Dizisinin Etkin yüzey Silanizasyonu Ve Floresan Etiketlenmesi: Optimizasyon Ve Karakterizasyon”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1127-38, doi:10.28948/ngumuh.1449020.
Vancouver Açıkgöz S, Yüngeviş H, Şahin A, Özünal E. Germanyum piramit dizisinin etkin yüzey silanizasyonu ve floresan etiketlenmesi: Optimizasyon ve karakterizasyon. NOHU J. Eng. Sci. 2024;13(4):1127-38.

download