Research Article
BibTex RIS Cite

Kayan tipli denetim ve PI kontrol tekniklerinin Düşüren-Yükselten dönüştürücü için karşılaştırılması

Year 2024, Volume: 13 Issue: 4, 1435 - 1442, 15.10.2024
https://doi.org/10.28948/ngumuh.1459414

Abstract

Bu makalede, farklı voltaj ve yük koşulları altında Kayan Tipli Denetim Kontrol (SMC) ve Oransal-İntegral (PI) kontrolörün performansı karşılaştırmaktadır. Çalışmanın bulguları, sistem tasarımlarındaki yük değişimlerini hesaba katarak ve seçilen kontrolör tipine bakılmaksızın sürekli olarak sistem optimizasyonu arama ihtiyacının altını çizmektedir. PI kontrolörü belirli koşullar altında etkinlik göstermektedir. Ancak, ani yük değişimleri sırasında gerilim ve akımda önemli düşüşler elde edilebilmektedir. Öte yandan SMC, geçici voltaj geçişlerini ve yük değişimlerini herhangi bir elektriksel bozulma olmadan verimli bir şekilde yönetmektedir. Böylece sistem kararlılığını koruyarak SMC daha üstün uyarlanabilirlik sağlamaktadır. Karşılaştırmalı analiz ayrıca SMC'nin üstün zaman tepkisini ve referans voltajı değişikliklerine karşı etkinliğini göstermektedir. Sonuç olarak, SMC'nin, sık gerilim ve yük değişimlerinin yaşandığı sistemlerde PI denetleyiciye göre daha çok tercih edilebilir olduğu kanıtlanmıştır. Ancak her iki kontrol yöntemi de etkili sistem cevabı ve kararlılığını yakalayabilecek seviyede performans göstermiştir.

References

  • P. Azer and A. Emadi, Generalized state space average model for multi-phase interleaved Buck, Boost and Buck-Boost DC-DC converters: transient, steady-state and switching dynamics. IEEE Access, 8, pp. 77735-77745, 2020. https://doi.org/10.1109/ACCESS.2020.2 987277.
  • N. Rana, S. Banerjee, S. K. Giri, A. Trivedi and S. S. Williamson, Modeling, analysis and implementation of an improved interleaved Buck-Boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68 (7), pp. 2588-2592, 2021https://doi.org/ 10.1109/TCSII.2021.3056478.
  • M. J. Mnati, D. V. Bozalakov and A. Van den Bossche, New pulse width modulation technique to reduce losses for three-phase photovoltaic inverters. Act. Pass. Electron. Compon., 2018, pp. 1-10, 2018https:// doi.org/10.1155/2018/4157614
  • D. V. Bozalakov, J. Laveyne, M. J. Mnati, J. D. de Vyver and L. Vandevelde, Possible power quality ancillary services in low-voltage grids provided by the three-phase damping control strategy. Applied Science, 10 (21), pp. 7876, 2020. https://doi.org/10.33 90/app10217876
  • Z. Uysal and A. Karaarslan, Comparison of one cycle and PI control method using Buck-boost converter. In: Proc. 13th Int Conf Techical Physical Problem of Electrical Engineering, 22, pp. 115-120, 2017.
  • S. K. Pandey, S. L. Patil and S. B. Phadke, Regulation of nonminimum phase DC–DC converters using integral sliding mode control combined with a disturbance observer. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1649-1653, 2018. https://doi.org/10.1109/TCSII.201 7.2759908
  • Y. Wang, W. Zhang and C. Xue, Adaptive continuous sliding mode control of Buck converters with multidisturbances based on zero-crossing detection. IEEE Access, 10, pp. 72643-72657, 2022. https:// doi.org/10.1109/ACCESS.2022.3188760
  • S. W. Seo and H. H. Choi, Digital implementation of fractional order PID-type controller for Boost DC–DC converter. IEEE Access, 7, pp. 142652-142662, 2019. https://doi.org/10.1109/ACCESS.2019.2945065
  • H. H. Park and G. H. Cho, A DC–DC converter for a fully integrated PID compensator with a single capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 61 (8), pp. 629-633, 2014. https://doi.org/10.1109/TCSII.2014.2327351
  • M. J. Mnati, D. V. Bozalakov, and A. van den Bossche, A new synchronization technique of a three-phase grid tied inverter for photovoltaic applications. Mathematical Problems in Engineering, pp. 1–13, 2018. https://doi.org/10.1155/2018/7852642
  • S. C. Tan, Y. M. Lai and C. K. Tse, Indirect sliding mode control of power converters via double integral sliding surface. IEEE Trans. on Power Electronics,. 23 (2), pp. 600–611, 2008. https://doi.org/10.1109/TP EL.2007.915624
  • S. C. Tan, Y. M. Lai, C.K. Tse and M. K. H. Cheung, Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Trans. on Power Electronics, vol. 21, no. 1, pp. 182–192, 2006. https://doi.org/10.1109/TPEL.2005.861191
  • S. C. Tan, Y. M. Lai and C. K. Tse, General design issues of sliding-mode controllers in DC-DC converters. IEEE Trans. Industrial Electronics, 55 (3), pp. 1160–1174, Mar. 2008. https://doi.org/10.11 09/TIE.2007.909058
  • E. Vidal-Idiarte, A. Marcos-Pastor, R. Giral, J. Calvente and L. Martinez-Salamero, Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electronics, 10 (13), pp. 1714–1720, 2017. https://doi.org/ 10.1049/iet-pel.2016.0975
  • R. K. Subroto, L. Ardhenta and E. Maulana, A novel of adaptive sliding mode controller with observer for DC/DC boost converters in photovoltaic system. in Proc. of 5th International Conference on Electrical, Electronics and Information Engineering, Malang, Indonesia, pp. 9–14, 2017. https://doi.org/ 10.1109/ICEEIE.2017.8328754
  • N. I. P. de León Puig, D. Bozalakov, L. Acho, L. Vandevelde and J. Rodellar, An adaptive–predictive control scheme with dynamic hysteresis modulation applied to a DC–DC buck converter. ISA Transactions, 105 (1), pp. 240–255, 2020. https://doi.org/10.101 6/j.isatra.2020.05.015
  • S. Benzaouia, N. K.M’Sirdi, A. Rabhi and S. Zouggar, Signed-Distance fuzzy-şogic Sliding-Mode control strategy for floating interleaved Boost converter. 2021 9th International Conference on Systems and Control (ICSC), Caen, France, pp. 417-422, 2021. https://doi .org/10.1109/ICSC50472.2021.9666701
  • Md. S. Ul-Alam, M. Quamruzzaman and K. M. Rahman, Fuzzy logic based sliding mode-controlled dc- dc boost converter. in International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka, Bangladesh, pp. 70-73 2010. https://doi.org/ 10.1109/ICELCE.2010.5700555
  • Z. B. Duranay, H. Guldemir and S. Tuncer, Fuzzy sliding mode control of DC-DC Boost converter. Engineering Technology & Applied Science Research, 8 (3), pp. 3054–3059, 2018. https://doi.org/10.48084/ etasr.2116
  • B. M. David and S. K. K. Sreeja, A Review of sliding mode control of DC-DC converters. International Research Journal of Engineering and Technology (IRJET), 2, pp. 1382-1386, 2015.
  • S. C. Tan, Y. M. Lai and C. K. Tse, General design issues of sliding-mode controllers in dc–dc converters. IEEE Transactions on Industrial Electronics, 55, pp. 1160-1174, 2008.http://doi.org/10.1109/TIE.2007. 909058
  • S. Dhali, P. Rao, P. Mande and K. Rao, PWM-based sliding mode controller for DC-DC boost converter. International Journal of Engineering Research and Applications (IJERA), 2, pp. 618-623, 2012.
  • M. K. Khan, Design and application of second order sliding mode control algorithms. Ph.D. dissertation, Dept. Eng., University of Leicester, Leicester, U.K., 2003.
  • M. Deshmukh, A constant frequency second order sliding mode controller for buck converter. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, pp. 1-5, 2017. http:// doi.org/10.1109/ICECCT.2017.8118001
  • M. Z. Zulkifli, M. Azri, A. Alias, N. Talib and J. M. Lazi, Simple control scheme buck-boost DC-DC converter for stand alone PV application system. International Journal of Power Electronics and Drive System (IJPEDS), vol. 10, no. 2, pp. 1090-1101, 2019. http://doi.org/10.11591/ijpeds.v10.i2.pp1090-1101
  • A. S. T. Hussain, F. H. Taha, H. A. Fadhil, S. Q. Salih and T. A. Taha, Designing an optimal PID controller for a PV-connected Zeta converter using genetic algorithm. International Journal of Power Electronics and Drive System (IJPEDS), 15 (2), pp. 566-576, 2024. http://doi.org/10.11591/ijpeds.v15.i1.pp566-576

The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters

Year 2024, Volume: 13 Issue: 4, 1435 - 1442, 15.10.2024
https://doi.org/10.28948/ngumuh.1459414

Abstract

This paper compares the performance of a Sliding Mode Control (SMC) and Proportional-Integral (PI) controller under different voltage and load conditions. The study's findings underscore the need to account for load variations in system designs and to continuously seek system optimization irrespective of the controller type chosen. PI controller demonstrates effectiveness under certain circumstances. However, significant drops in voltage and current during abrupt load changes are obtained. On the other hand, SMC enables superior adaptability, efficiently managing voltage transients and load variations without any electrical disturbances, thereby maintaining system stability. A comparative analysis further emphasizes the SMC's superior time response and robustness against reference voltage changes. Consequently, SMC is proven to be a preferable choice over the PI controller in systems experiencing frequent voltage and load variations. However, both controllers achieve the potential for further response time optimization and stability.

References

  • P. Azer and A. Emadi, Generalized state space average model for multi-phase interleaved Buck, Boost and Buck-Boost DC-DC converters: transient, steady-state and switching dynamics. IEEE Access, 8, pp. 77735-77745, 2020. https://doi.org/10.1109/ACCESS.2020.2 987277.
  • N. Rana, S. Banerjee, S. K. Giri, A. Trivedi and S. S. Williamson, Modeling, analysis and implementation of an improved interleaved Buck-Boost converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 68 (7), pp. 2588-2592, 2021https://doi.org/ 10.1109/TCSII.2021.3056478.
  • M. J. Mnati, D. V. Bozalakov and A. Van den Bossche, New pulse width modulation technique to reduce losses for three-phase photovoltaic inverters. Act. Pass. Electron. Compon., 2018, pp. 1-10, 2018https:// doi.org/10.1155/2018/4157614
  • D. V. Bozalakov, J. Laveyne, M. J. Mnati, J. D. de Vyver and L. Vandevelde, Possible power quality ancillary services in low-voltage grids provided by the three-phase damping control strategy. Applied Science, 10 (21), pp. 7876, 2020. https://doi.org/10.33 90/app10217876
  • Z. Uysal and A. Karaarslan, Comparison of one cycle and PI control method using Buck-boost converter. In: Proc. 13th Int Conf Techical Physical Problem of Electrical Engineering, 22, pp. 115-120, 2017.
  • S. K. Pandey, S. L. Patil and S. B. Phadke, Regulation of nonminimum phase DC–DC converters using integral sliding mode control combined with a disturbance observer. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1649-1653, 2018. https://doi.org/10.1109/TCSII.201 7.2759908
  • Y. Wang, W. Zhang and C. Xue, Adaptive continuous sliding mode control of Buck converters with multidisturbances based on zero-crossing detection. IEEE Access, 10, pp. 72643-72657, 2022. https:// doi.org/10.1109/ACCESS.2022.3188760
  • S. W. Seo and H. H. Choi, Digital implementation of fractional order PID-type controller for Boost DC–DC converter. IEEE Access, 7, pp. 142652-142662, 2019. https://doi.org/10.1109/ACCESS.2019.2945065
  • H. H. Park and G. H. Cho, A DC–DC converter for a fully integrated PID compensator with a single capacitor. IEEE Transactions on Circuits and Systems II: Express Briefs, 61 (8), pp. 629-633, 2014. https://doi.org/10.1109/TCSII.2014.2327351
  • M. J. Mnati, D. V. Bozalakov, and A. van den Bossche, A new synchronization technique of a three-phase grid tied inverter for photovoltaic applications. Mathematical Problems in Engineering, pp. 1–13, 2018. https://doi.org/10.1155/2018/7852642
  • S. C. Tan, Y. M. Lai and C. K. Tse, Indirect sliding mode control of power converters via double integral sliding surface. IEEE Trans. on Power Electronics,. 23 (2), pp. 600–611, 2008. https://doi.org/10.1109/TP EL.2007.915624
  • S. C. Tan, Y. M. Lai, C.K. Tse and M. K. H. Cheung, Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Trans. on Power Electronics, vol. 21, no. 1, pp. 182–192, 2006. https://doi.org/10.1109/TPEL.2005.861191
  • S. C. Tan, Y. M. Lai and C. K. Tse, General design issues of sliding-mode controllers in DC-DC converters. IEEE Trans. Industrial Electronics, 55 (3), pp. 1160–1174, Mar. 2008. https://doi.org/10.11 09/TIE.2007.909058
  • E. Vidal-Idiarte, A. Marcos-Pastor, R. Giral, J. Calvente and L. Martinez-Salamero, Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electronics, 10 (13), pp. 1714–1720, 2017. https://doi.org/ 10.1049/iet-pel.2016.0975
  • R. K. Subroto, L. Ardhenta and E. Maulana, A novel of adaptive sliding mode controller with observer for DC/DC boost converters in photovoltaic system. in Proc. of 5th International Conference on Electrical, Electronics and Information Engineering, Malang, Indonesia, pp. 9–14, 2017. https://doi.org/ 10.1109/ICEEIE.2017.8328754
  • N. I. P. de León Puig, D. Bozalakov, L. Acho, L. Vandevelde and J. Rodellar, An adaptive–predictive control scheme with dynamic hysteresis modulation applied to a DC–DC buck converter. ISA Transactions, 105 (1), pp. 240–255, 2020. https://doi.org/10.101 6/j.isatra.2020.05.015
  • S. Benzaouia, N. K.M’Sirdi, A. Rabhi and S. Zouggar, Signed-Distance fuzzy-şogic Sliding-Mode control strategy for floating interleaved Boost converter. 2021 9th International Conference on Systems and Control (ICSC), Caen, France, pp. 417-422, 2021. https://doi .org/10.1109/ICSC50472.2021.9666701
  • Md. S. Ul-Alam, M. Quamruzzaman and K. M. Rahman, Fuzzy logic based sliding mode-controlled dc- dc boost converter. in International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka, Bangladesh, pp. 70-73 2010. https://doi.org/ 10.1109/ICELCE.2010.5700555
  • Z. B. Duranay, H. Guldemir and S. Tuncer, Fuzzy sliding mode control of DC-DC Boost converter. Engineering Technology & Applied Science Research, 8 (3), pp. 3054–3059, 2018. https://doi.org/10.48084/ etasr.2116
  • B. M. David and S. K. K. Sreeja, A Review of sliding mode control of DC-DC converters. International Research Journal of Engineering and Technology (IRJET), 2, pp. 1382-1386, 2015.
  • S. C. Tan, Y. M. Lai and C. K. Tse, General design issues of sliding-mode controllers in dc–dc converters. IEEE Transactions on Industrial Electronics, 55, pp. 1160-1174, 2008.http://doi.org/10.1109/TIE.2007. 909058
  • S. Dhali, P. Rao, P. Mande and K. Rao, PWM-based sliding mode controller for DC-DC boost converter. International Journal of Engineering Research and Applications (IJERA), 2, pp. 618-623, 2012.
  • M. K. Khan, Design and application of second order sliding mode control algorithms. Ph.D. dissertation, Dept. Eng., University of Leicester, Leicester, U.K., 2003.
  • M. Deshmukh, A constant frequency second order sliding mode controller for buck converter. 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, pp. 1-5, 2017. http:// doi.org/10.1109/ICECCT.2017.8118001
  • M. Z. Zulkifli, M. Azri, A. Alias, N. Talib and J. M. Lazi, Simple control scheme buck-boost DC-DC converter for stand alone PV application system. International Journal of Power Electronics and Drive System (IJPEDS), vol. 10, no. 2, pp. 1090-1101, 2019. http://doi.org/10.11591/ijpeds.v10.i2.pp1090-1101
  • A. S. T. Hussain, F. H. Taha, H. A. Fadhil, S. Q. Salih and T. A. Taha, Designing an optimal PID controller for a PV-connected Zeta converter using genetic algorithm. International Journal of Power Electronics and Drive System (IJPEDS), 15 (2), pp. 566-576, 2024. http://doi.org/10.11591/ijpeds.v15.i1.pp566-576
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives, Power Electronics
Journal Section Research Articles
Authors

Salah Hilo Mohammed Al-attwani 0009-0002-1403-4968

Mustafa Teke 0000-0002-7262-4918

Enes Bektaş 0000-0002-8380-4519

Ethar Sulaiman Yaseen Yaseen 0000-0002-5259-378X

Yasin Bektaş 0000-0002-3681-0123

Zafer Civelek 0000-0001-6838-3149

Early Pub Date October 10, 2024
Publication Date October 15, 2024
Submission Date March 27, 2024
Acceptance Date September 14, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Al-attwani, S. H. M., Teke, M., Bektaş, E., Yaseen, E. S. Y., et al. (2024). The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1435-1442. https://doi.org/10.28948/ngumuh.1459414
AMA Al-attwani SHM, Teke M, Bektaş E, Yaseen ESY, Bektaş Y, Civelek Z. The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters. NOHU J. Eng. Sci. October 2024;13(4):1435-1442. doi:10.28948/ngumuh.1459414
Chicago Al-attwani, Salah Hilo Mohammed, Mustafa Teke, Enes Bektaş, Ethar Sulaiman Yaseen Yaseen, Yasin Bektaş, and Zafer Civelek. “The Comparison Study of PI and Sliding Mode Control Techniques for Buck-Boost Converters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1435-42. https://doi.org/10.28948/ngumuh.1459414.
EndNote Al-attwani SHM, Teke M, Bektaş E, Yaseen ESY, Bektaş Y, Civelek Z (October 1, 2024) The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1435–1442.
IEEE S. H. M. Al-attwani, M. Teke, E. Bektaş, E. S. Y. Yaseen, Y. Bektaş, and Z. Civelek, “The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1435–1442, 2024, doi: 10.28948/ngumuh.1459414.
ISNAD Al-attwani, Salah Hilo Mohammed et al. “The Comparison Study of PI and Sliding Mode Control Techniques for Buck-Boost Converters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1435-1442. https://doi.org/10.28948/ngumuh.1459414.
JAMA Al-attwani SHM, Teke M, Bektaş E, Yaseen ESY, Bektaş Y, Civelek Z. The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters. NOHU J. Eng. Sci. 2024;13:1435–1442.
MLA Al-attwani, Salah Hilo Mohammed et al. “The Comparison Study of PI and Sliding Mode Control Techniques for Buck-Boost Converters”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1435-42, doi:10.28948/ngumuh.1459414.
Vancouver Al-attwani SHM, Teke M, Bektaş E, Yaseen ESY, Bektaş Y, Civelek Z. The comparison study of PI and Sliding Mode control techniques for Buck-Boost converters. NOHU J. Eng. Sci. 2024;13(4):1435-42.

download