Research Article
BibTex RIS Cite

İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi

Year 2024, Volume: 13 Issue: 4, 1428 - 1434, 15.10.2024
https://doi.org/10.28948/ngumuh.1495188

Abstract

Katı hal piller için, oda sıcaklığında iyonik iletkenliği iyileştirmek için kalsinasyon tekniklerini iyileştirmek ve katı elektrolit sistemine uygun element katkısı yaygın olarak önerilmiştir. Element katkısı, LATP katı elektrolitlerinin fizikokimyasal ve elektrokimyasal özelliklerini artırmak için en doğru yöntemlerdendir. LATP sistemindeki titanyum bölgesinde indiyum katkısı kapsamlı bir şekilde incelenmemiştir. İndiyumun daha büyük iyonik yarıçapı ile kafes hacmini artırabileceği ve böylece iyonik iletkenliği artırabileceği varsayılmaktadır. Bu çalışmada, %10 indiyum katkılı LiAlTi(PO4)3 (LATP) katı elektrolitinin iyonik iletkenliği incelenmiştir. Sentezlenen LiAlInTi(PO4)3 (LAITP) katı elektrolit, sırasıyla X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve elektrokimyasal empedans spektroskopisi (EIS) kullanılarak kristal yapısı, morfolojik özellikleri ve Li+ iyon iletkenliği açısından karakterize edilmiştir. Sonuçlar, indiyum katkısının LATP'ye kıyasla nispeten daha düşük iyonik iletkenliğe rağmen, yine de tamamen katı hal lityum iyon piller için katı elektrolitlerin geliştirilmesini teşvik edebileceğini göstermektedir.

Supporting Institution

Selçuk Üniversitesi Bilimsel Araştırma Projeleri (BAP) Birimi

Project Number

23401002

References

  • Thangadurai, V., Pinzaru, D., Narayanan, S., Baral, A.K.: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. The journal of physical chemistry letters. 6, 292–299, 2015. https://doi.org/10.1021/jz501828v
  • Liu, Q., Geng, Z., Han, C., Fu, Y., Li, S., He, Y., Kang, F., Li, B.: Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources. 389, 120–134, 2018. https://doi.org/10.1016/j.jpowsour.2018.04.019
  • Kumar, B., Scanlon, L.G.: Polymer-ceramic composite electrolytes. Journal of power sources. 52, 261–268, 1994. https://doi.org/10.1016/0378-7753(94)02147-3
  • Tan, S.-J., Zeng, X.-X., Ma, Q., Wu, X.-W., Guo, Y.-G.: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochemical Energy Reviews. 1, 113–138, 2018. https://doi.org/10.1007/s41918-018-0011-2
  • Schnell, J., Günther, T., Knoche, T., Vieider, C., Köhler, L., Just, A., Keller, M., Passerini, S., Reinhart, G.: All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production. Journal of Power Sources. 382, 160–175, 2018. https://doi.org/10.1016/j.jpowsour.2018.02.062
  • Wu, J., Rao, Z., Cheng, Z., Yuan, L., Li, Z., Huang, Y.: Ultrathin, flexible polymer electrolyte for cost‐effective fabrication of all‐solid‐state lithium metal batteries. Advanced Energy Materials. 9, 1902767, 2019. https://doi.org/10.1002/aenm.201902767
  • Murata, K., Izuchi, S., Yoshihisa, Y.: An overview of the research and development of solid polymer electrolyte batteries. Electrochimica acta. 45, 1501–1508, 2000.https://doi.org/10.1016/S0013-4686(99) 00365-5
  • Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., Tu, J.P.: Interfacial challenges and progress for inorganic all-solid-state lithium batteries. Electrochimica Acta. 284, 177–187, 2018.https:// doi.org/10.1016/j.electacta.2018.07.191
  • Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C.: Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources. 208, 210–224, 2012.https://doi.org/10.1016/j.jpow sour.20 12.02.03
  • Gao, Z., Sun, H., Fu, L., Ye, F., Zhang, Y., Luo, W., Huang, Y.: Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries. Advanced Materials. 30, 1705702, 2018. https://doi.org/10.1002/adma.201705702
  • Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., Ceder, G.: Interface stability in solid-state batteries. Chemistry of Materials. 28, 266–273, 2016. https://doi.org/10.1021/acs.chemmater.5b04082
  • Yu, X., Manthiram, A.: Electrode–electrolyte interfaces in lithium-based batteries. Energy & Environmental Science. 11, 527–543, 2018. https://doi.org/10.1039/C7EE02555F
  • Tan, D.H., Banerjee, A., Chen, Z., Meng, Y.S.: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature nanotechnology. 15, 170–180, 2020. https://doi.org/ 10.1038/s41565-020-0657-x
  • Mariappan, C.R., Yada, C., Rosciano, F., Roling, B.: Correlation between micro-structural properties and ionic conductivity of Li1. 5Al0. 5Ge1. 5 (PO4) 3 ceramics. Journal of Power Sources. 196, 6456–6464, 2011. https://doi.org/10.1016/j.jpowsour.2011.03.0 65
  • Kumar, B., Thomas, D., Kumar, J.: Space-charge-mediated superionic transport in lithium ion conducting glass–ceramics. Journal of The Electrochemical Society. 156, A506, 2009. https:// doi.org/10.114/1.3122903
  • Liu, J., Liu, T., Pu, Y., Guan, M., Tang, Z., Ding, F., Xu, Z., Li, Y.: Facile synthesis of NASICON-type Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li 3 PO 4 SEI layer. RSC Advances. 7, 46545–46552, 2017. https://doi.org/10.1039/C7RA0 9335G
  • Waetzig, K., Rost, A., Heubner, C., Coeler, M., Nikolowski, K., Wolter, M., Schilm, J.: Synthesis and sintering of Li1. 3Al0. 3Ti1. 7 (PO4) 3 (LATP) electrolyte for ceramics with improved Li+ conductivity. Journal of Alloys and Compounds. 818, 153237, 2020. https://doi.org/10.1039/C7RA09335G
  • Epp, V., Ma, Q., Hammer, E.-M., Tietz, F., Wilkening, M.: Very fast bulk Li ion diffusivity in crystalline Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3 as seen using NMR relaxometry. Physical Chemistry Chemical Physics. 17, 32115–32121, 2015. https://doi.org/ 10.1039/C5CP05337D
  • Öksüzoğlu, F., Ateş, Ş., Özkendir, O.M., Çelik, G., Eker, Y.R., Baveghar, H.: Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method. Ceramics International., 2024. https://doi.org/10.1 016/j.ceramint.2024.05.450
  • Siller, V., Morata, A., Eroles, M.N., Arenal, R., Gonzalez-Rosillo, J.C., del Amo, J.M.L., Tarancón, A.: High performance LATP thin film electrolytes for all-solid-state microbattery applications. Journal of Materials Chemistry A. 9, 17760–17769, 2021. https://doi.org/10.1039/D1TA02991F
  • Arbi, K., Mandal, S., Rojo, J.M., Sanz, J.: Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li 1+ x Ti 2 - x Al x (PO 4 ) 3 , 0 ≤ x ≤ 0.7. A Parallel NMR and Electric Impedance Study. Chem. Mater. 14, 1091–1097, 2002. https:// doi.org/10.1021/cm010528i
  • Mariappan, C.R., Gellert, M., Yada, C., Rosciano, F., Roling, B.: Grain boundary resistance of fast lithium ion conductors: comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1. 5Al0. 5Ge1. 5P3O12 ceramic. Electrochemistry Communications. 14, 25–28, 2012. https://doi.org/10 .1016/j.elecom.2011.10.022
  • Campanella, D., Krachkovskiy, S., Faure, C., Zhu, W., Feng, Z., Savoie, S., Girard, G., Demers, H., Vijh, A., George, C., Armand, M., Belanger, D., Paolella, A.: Influence of AlPO 4 Impurity on the Electrochemical Properties of NASICON‐Type Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 Solid Electrolyte. ChemElec troChem. 9, e202200984, 2022. https://doi.org/10.10 02/celc.202200984
  • Li, J., Liu, C., Miao, C., Kou, Z., Xiao, W.: Enhanced ionic conductivity and electrochemical stability of Indium doping Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries. Ionics. 28, 63–72, 2022. https://doi.org/10.1007/s1 1581-021-04310-8
  • Zhao, E., Guo, Y., Xu, G., Yuan, L., Liu, J., Li, X., Yang, L., Ma, J., Li, Y., Fan, S.: High ionic conductivity Y doped Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte. Journal of Alloys and Compounds. 782, 384–391, 2019. https://doi.org/10.1016/j.jall com.2018.12.183
  • Krasnikova, I.V., Pogosova, M.A., Sanin, A.O., Stevenson, K.J.: Toward Standardization of Electrochemical Impedance Spectroscopy Studies of Li-Ion Conductive Ceramics. Chem. Mater. 32, 2232–2241,2020. https://doi.org/10.1021/acs.chemmater.9b04899
  • Öksüzoğlu, F., Ateş, Ş., Özkendir, O.M., Çelik, G., Eker, Y.R., Baveghar, H., Basyooni-M. Kabatas, M.A.: The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes. Materials. 17, 3846, 2024. https:// doi.org/10.3390/ma17153846
  • Li, X., Zhou, Y., Tang, J., Zhao, S., Zhang, J., Huang, X., Tian, B.: Optimizing Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 Particle Sizes toward High Ionic Conductivity. ACS Appl. Mater. Interfaces. 15, 36289–36300, 2023. https://doi.org/10.1021/acsami.3c06675
  • Shen, S.-P., Tang, G., Li, H.-J., Zhang, L., Zheng, J.-C., Luo, Y., Yue, J.-P., Shi, Y., Chen, Z.: Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity. Ceramics International. 48, 36961–36967, 2022. https://doi. org/10.1016/j.ceramint.2022.08.264
  • Kwatek, K., Nowiński, J.L.: Electrical properties of LiTi2 (PO4) 3 and Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolytes containing ionic liquid. Solid State Ionics. 302, 54–60, 2017. https://doi.org/10.1016/j .ssi.2016.11.020
  • Lin, Y., Luo, N., Quattrocchi, E., Ciucci, F., Wu, J., Kermani, M., Dong, J., Hu, C., Grasso, S.: Ultrafast high-temperature sintering (UHS) of Li1. 3Al0. 3Ti1. 7 (PO4) 3. Ceramics International. 47, 21982–21987, 2021. https://doi.org/10.1016/j.ceramint.2021.04.216
  • Gunamony, J., Walle, K.Z., Kotobuki, M.: Influence of mixing technique on properties of Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte prepared by the solid-state reaction-A comparison of dry 3D mixing technique with wet ball-milling. Solid State Ionics. 410, 116528, 2024. https://doi.org/10.1016/j.ssi.2024.116 528
  • Li, J., Liu, C., Miao, C., Kou, Z., Xiao, W.: Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries. Ionics. 1–10, 2022. https://doi.org/10.1007/s11581-0 21-04310-8

Structure of indium-doped LATP solid electrolyte and effect of doping on ionic conductivity

Year 2024, Volume: 13 Issue: 4, 1428 - 1434, 15.10.2024
https://doi.org/10.28948/ngumuh.1495188

Abstract

For solid-state batteries, improving calcination techniques to improve ionic conductivity at room temperature and appropriate element doping to the solid electrolyte system have been widely proposed. Element doping is one of the most accurate methods to improve the physicochemical and electrochemical properties of LATP solid electrolytes. The doping of indium at the titanium site in the LATP system has not been extensively studied. It is hypothesised that indium can increase the lattice volume with its larger ionic radius and thus increase the ionic conductivity. In this study, the ionic conductivity of 10% indium doped LiAlTi(PO4)3 (LATP) solid electrolyte was investigated. The synthesised LiAlInTi(PO4)3 (LAITP) solid electrolyte was characterised in terms of crystal structure, morphological properties and Li+ ion conductivity using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS), respectively. The results show that indium doping, despite the relatively lower ionic conductivity compared to LATP, can still promote the development of solid electrolytes for all-solid-state lithium ion batteries.

Project Number

23401002

References

  • Thangadurai, V., Pinzaru, D., Narayanan, S., Baral, A.K.: Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. The journal of physical chemistry letters. 6, 292–299, 2015. https://doi.org/10.1021/jz501828v
  • Liu, Q., Geng, Z., Han, C., Fu, Y., Li, S., He, Y., Kang, F., Li, B.: Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources. 389, 120–134, 2018. https://doi.org/10.1016/j.jpowsour.2018.04.019
  • Kumar, B., Scanlon, L.G.: Polymer-ceramic composite electrolytes. Journal of power sources. 52, 261–268, 1994. https://doi.org/10.1016/0378-7753(94)02147-3
  • Tan, S.-J., Zeng, X.-X., Ma, Q., Wu, X.-W., Guo, Y.-G.: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochemical Energy Reviews. 1, 113–138, 2018. https://doi.org/10.1007/s41918-018-0011-2
  • Schnell, J., Günther, T., Knoche, T., Vieider, C., Köhler, L., Just, A., Keller, M., Passerini, S., Reinhart, G.: All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production. Journal of Power Sources. 382, 160–175, 2018. https://doi.org/10.1016/j.jpowsour.2018.02.062
  • Wu, J., Rao, Z., Cheng, Z., Yuan, L., Li, Z., Huang, Y.: Ultrathin, flexible polymer electrolyte for cost‐effective fabrication of all‐solid‐state lithium metal batteries. Advanced Energy Materials. 9, 1902767, 2019. https://doi.org/10.1002/aenm.201902767
  • Murata, K., Izuchi, S., Yoshihisa, Y.: An overview of the research and development of solid polymer electrolyte batteries. Electrochimica acta. 45, 1501–1508, 2000.https://doi.org/10.1016/S0013-4686(99) 00365-5
  • Xu, R.C., Xia, X.H., Zhang, S.Z., Xie, D., Wang, X.L., Tu, J.P.: Interfacial challenges and progress for inorganic all-solid-state lithium batteries. Electrochimica Acta. 284, 177–187, 2018.https:// doi.org/10.1016/j.electacta.2018.07.191
  • Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C.: Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources. 208, 210–224, 2012.https://doi.org/10.1016/j.jpow sour.20 12.02.03
  • Gao, Z., Sun, H., Fu, L., Ye, F., Zhang, Y., Luo, W., Huang, Y.: Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries. Advanced Materials. 30, 1705702, 2018. https://doi.org/10.1002/adma.201705702
  • Richards, W.D., Miara, L.J., Wang, Y., Kim, J.C., Ceder, G.: Interface stability in solid-state batteries. Chemistry of Materials. 28, 266–273, 2016. https://doi.org/10.1021/acs.chemmater.5b04082
  • Yu, X., Manthiram, A.: Electrode–electrolyte interfaces in lithium-based batteries. Energy & Environmental Science. 11, 527–543, 2018. https://doi.org/10.1039/C7EE02555F
  • Tan, D.H., Banerjee, A., Chen, Z., Meng, Y.S.: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature nanotechnology. 15, 170–180, 2020. https://doi.org/ 10.1038/s41565-020-0657-x
  • Mariappan, C.R., Yada, C., Rosciano, F., Roling, B.: Correlation between micro-structural properties and ionic conductivity of Li1. 5Al0. 5Ge1. 5 (PO4) 3 ceramics. Journal of Power Sources. 196, 6456–6464, 2011. https://doi.org/10.1016/j.jpowsour.2011.03.0 65
  • Kumar, B., Thomas, D., Kumar, J.: Space-charge-mediated superionic transport in lithium ion conducting glass–ceramics. Journal of The Electrochemical Society. 156, A506, 2009. https:// doi.org/10.114/1.3122903
  • Liu, J., Liu, T., Pu, Y., Guan, M., Tang, Z., Ding, F., Xu, Z., Li, Y.: Facile synthesis of NASICON-type Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li 3 PO 4 SEI layer. RSC Advances. 7, 46545–46552, 2017. https://doi.org/10.1039/C7RA0 9335G
  • Waetzig, K., Rost, A., Heubner, C., Coeler, M., Nikolowski, K., Wolter, M., Schilm, J.: Synthesis and sintering of Li1. 3Al0. 3Ti1. 7 (PO4) 3 (LATP) electrolyte for ceramics with improved Li+ conductivity. Journal of Alloys and Compounds. 818, 153237, 2020. https://doi.org/10.1039/C7RA09335G
  • Epp, V., Ma, Q., Hammer, E.-M., Tietz, F., Wilkening, M.: Very fast bulk Li ion diffusivity in crystalline Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3 as seen using NMR relaxometry. Physical Chemistry Chemical Physics. 17, 32115–32121, 2015. https://doi.org/ 10.1039/C5CP05337D
  • Öksüzoğlu, F., Ateş, Ş., Özkendir, O.M., Çelik, G., Eker, Y.R., Baveghar, H.: Structure and ionic conductivity of NASICON-type LATP solid electrolyte synthesized by the solid-state method. Ceramics International., 2024. https://doi.org/10.1 016/j.ceramint.2024.05.450
  • Siller, V., Morata, A., Eroles, M.N., Arenal, R., Gonzalez-Rosillo, J.C., del Amo, J.M.L., Tarancón, A.: High performance LATP thin film electrolytes for all-solid-state microbattery applications. Journal of Materials Chemistry A. 9, 17760–17769, 2021. https://doi.org/10.1039/D1TA02991F
  • Arbi, K., Mandal, S., Rojo, J.M., Sanz, J.: Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li 1+ x Ti 2 - x Al x (PO 4 ) 3 , 0 ≤ x ≤ 0.7. A Parallel NMR and Electric Impedance Study. Chem. Mater. 14, 1091–1097, 2002. https:// doi.org/10.1021/cm010528i
  • Mariappan, C.R., Gellert, M., Yada, C., Rosciano, F., Roling, B.: Grain boundary resistance of fast lithium ion conductors: comparison between a lithium-ion conductive Li–Al–Ti–P–O-type glass ceramic and a Li1. 5Al0. 5Ge1. 5P3O12 ceramic. Electrochemistry Communications. 14, 25–28, 2012. https://doi.org/10 .1016/j.elecom.2011.10.022
  • Campanella, D., Krachkovskiy, S., Faure, C., Zhu, W., Feng, Z., Savoie, S., Girard, G., Demers, H., Vijh, A., George, C., Armand, M., Belanger, D., Paolella, A.: Influence of AlPO 4 Impurity on the Electrochemical Properties of NASICON‐Type Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 Solid Electrolyte. ChemElec troChem. 9, e202200984, 2022. https://doi.org/10.10 02/celc.202200984
  • Li, J., Liu, C., Miao, C., Kou, Z., Xiao, W.: Enhanced ionic conductivity and electrochemical stability of Indium doping Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries. Ionics. 28, 63–72, 2022. https://doi.org/10.1007/s1 1581-021-04310-8
  • Zhao, E., Guo, Y., Xu, G., Yuan, L., Liu, J., Li, X., Yang, L., Ma, J., Li, Y., Fan, S.: High ionic conductivity Y doped Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte. Journal of Alloys and Compounds. 782, 384–391, 2019. https://doi.org/10.1016/j.jall com.2018.12.183
  • Krasnikova, I.V., Pogosova, M.A., Sanin, A.O., Stevenson, K.J.: Toward Standardization of Electrochemical Impedance Spectroscopy Studies of Li-Ion Conductive Ceramics. Chem. Mater. 32, 2232–2241,2020. https://doi.org/10.1021/acs.chemmater.9b04899
  • Öksüzoğlu, F., Ateş, Ş., Özkendir, O.M., Çelik, G., Eker, Y.R., Baveghar, H., Basyooni-M. Kabatas, M.A.: The Impact of Boron Compounds on the Structure and Ionic Conductivity of LATP Solid Electrolytes. Materials. 17, 3846, 2024. https:// doi.org/10.3390/ma17153846
  • Li, X., Zhou, Y., Tang, J., Zhao, S., Zhang, J., Huang, X., Tian, B.: Optimizing Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 Particle Sizes toward High Ionic Conductivity. ACS Appl. Mater. Interfaces. 15, 36289–36300, 2023. https://doi.org/10.1021/acsami.3c06675
  • Shen, S.-P., Tang, G., Li, H.-J., Zhang, L., Zheng, J.-C., Luo, Y., Yue, J.-P., Shi, Y., Chen, Z.: Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity. Ceramics International. 48, 36961–36967, 2022. https://doi. org/10.1016/j.ceramint.2022.08.264
  • Kwatek, K., Nowiński, J.L.: Electrical properties of LiTi2 (PO4) 3 and Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolytes containing ionic liquid. Solid State Ionics. 302, 54–60, 2017. https://doi.org/10.1016/j .ssi.2016.11.020
  • Lin, Y., Luo, N., Quattrocchi, E., Ciucci, F., Wu, J., Kermani, M., Dong, J., Hu, C., Grasso, S.: Ultrafast high-temperature sintering (UHS) of Li1. 3Al0. 3Ti1. 7 (PO4) 3. Ceramics International. 47, 21982–21987, 2021. https://doi.org/10.1016/j.ceramint.2021.04.216
  • Gunamony, J., Walle, K.Z., Kotobuki, M.: Influence of mixing technique on properties of Li1. 3Al0. 3Ti1. 7 (PO4) 3 solid electrolyte prepared by the solid-state reaction-A comparison of dry 3D mixing technique with wet ball-milling. Solid State Ionics. 410, 116528, 2024. https://doi.org/10.1016/j.ssi.2024.116 528
  • Li, J., Liu, C., Miao, C., Kou, Z., Xiao, W.: Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries. Ionics. 1–10, 2022. https://doi.org/10.1007/s11581-0 21-04310-8
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Energy
Journal Section Research Articles
Authors

Fatih Öksüzoğlu 0000-0003-0869-2606

Gültekin Çelik 0000-0001-8587-322X

Project Number 23401002
Early Pub Date October 10, 2024
Publication Date October 15, 2024
Submission Date June 3, 2024
Acceptance Date September 13, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Öksüzoğlu, F., & Çelik, G. (2024). İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(4), 1428-1434. https://doi.org/10.28948/ngumuh.1495188
AMA Öksüzoğlu F, Çelik G. İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi. NOHU J. Eng. Sci. October 2024;13(4):1428-1434. doi:10.28948/ngumuh.1495188
Chicago Öksüzoğlu, Fatih, and Gültekin Çelik. “İndiyum katkılı LATP Katı Elektrolitinin yapısı Ve katkılamanın Iyonik Iletkenlik üzerindeki Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 4 (October 2024): 1428-34. https://doi.org/10.28948/ngumuh.1495188.
EndNote Öksüzoğlu F, Çelik G (October 1, 2024) İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 4 1428–1434.
IEEE F. Öksüzoğlu and G. Çelik, “İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi”, NOHU J. Eng. Sci., vol. 13, no. 4, pp. 1428–1434, 2024, doi: 10.28948/ngumuh.1495188.
ISNAD Öksüzoğlu, Fatih - Çelik, Gültekin. “İndiyum katkılı LATP Katı Elektrolitinin yapısı Ve katkılamanın Iyonik Iletkenlik üzerindeki Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/4 (October 2024), 1428-1434. https://doi.org/10.28948/ngumuh.1495188.
JAMA Öksüzoğlu F, Çelik G. İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi. NOHU J. Eng. Sci. 2024;13:1428–1434.
MLA Öksüzoğlu, Fatih and Gültekin Çelik. “İndiyum katkılı LATP Katı Elektrolitinin yapısı Ve katkılamanın Iyonik Iletkenlik üzerindeki Etkisi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 4, 2024, pp. 1428-34, doi:10.28948/ngumuh.1495188.
Vancouver Öksüzoğlu F, Çelik G. İndiyum katkılı LATP katı elektrolitinin yapısı ve katkılamanın iyonik iletkenlik üzerindeki etkisi. NOHU J. Eng. Sci. 2024;13(4):1428-34.

download