Geochemical processes and groundwater chemistry: A case study Akçaşehir Plain (Karaman)
Yıl 2024,
Cilt: 13 Sayı: 4, 1526 - 1537, 15.10.2024
Fatma Aksever
,
Ayşen Davraz
Öz
In this study, the hydrochemical structure of groundwater in the Akçaşehir (Karaman) region and the factors forming this structure were investigated using chemical analysis data. In the evaluations, the origin of the chemical composition of the groundwater and the control mechanisms were determined by ion ratio analysis, correlation analysis and other hydrogeochemical methods. The Akçaşehir plain is located in the northeast of Karaman province. There are many drilling wells used in groundwater supply on the plain. The foundation of the study area consists of allochthonous rocks belonging to the Bolkar Mountain Unit. Current sediments with free aquifer characteristics and limestones in the region are important aquifers containing groundwater. In the study, it was determined that 74% of the water samples were in the Mg-Ca-HCO3/Ca-Mg-HCO3 water facies. The most effective hydrogeochemical process forming this structure is carbonate dissociation. The Na+ and SO4-2 increases detected in some samples are related to silicate dissociation and ion exchange processes. In general, it was determined that the water-rock interaction in the area directly affects the hydrogeochemical processes.
Kaynakça
- J. Liu, K. Lou, Z. Gao, M. Tan, Hydrochemical insights on the signatures and genesis of water resources in a high-altitude city on the Qinghai-Xizang Plateau, South-west China. Frontiers of Environmental Science & Engineering, 18(7), 88, 2024. https://doi.or g/10.1007/s11783-024-1848-8
- R.M. Kurakalva, G. Kuna, S.P. Vaiphei, S.S: Guddeti. Evaluation of hydrogeochemical profile, potential health risk and groundwater quality in rapidly growing urban region of Hyderabad, South India. Environmental Earth Sciences, 80(10), 383. 2021. https://doi.org/10.1007/s12665-021-09661-z
- L. Surinaidu, Role of hydrogeochemical process in increasing groundwater salinity in the central Godavari delta. Hydrology Research, 47 (2), 373–389, 2016. https://doi.org/10.2166/nh.2015.050
- C.A.J. Appelo, D. Postma, Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema, Rotterdam, 1999.
- J.D. Hem, The study and interpretation of the chemical characteristics of natural water, 3rd edn. USGS Water Supply Paper 2254, US Geological Survey, 1989.
- A.W. Hounslow. Water quality data analysis and interpretation. Lewis Publishers, 1995.
- L. Andre, M. Franceschi, P. Pouchan, O. Atteia, Using geochemical data and modeling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305, 40–62, 2005. https://doi.org/10.10 16/j.jhydrol.2004.08.027
- M. Jalali, Assessment of the chemical components of Famenin groundwater, western Iran. Environmental Geochemistry and Health, 29, 357–374, 2007. https:// doi.org/10.1007/s10653-006-9080-y
- A.K. Singh, G.C. Mondal, S. Kumar, T.B. Singh, B.K. Tewary, A. Sinha, Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar river basin. India Environmental Geology, 54, 745–758, 2008. https:// doi.org/10.1007/s00254-007-0860-1
- B.M. Shakya, T. Nakamura, S.D. Shrestha, K. Nishida, Identifying the deep groundwater recharge processes in an intermountain basin using the hydrogeochemical and water isotope characteristics. Hydrology Research, 50(5), 1216–1229, 2019. https://doi.org/10.2166/nh.20 19.164
- C.K. Tay, Hydrogeochemical framework of groundwater within the Asutifi-North District of the Brong-Ahafo Region, Ghana. Applied Water Science, 11(4), 72, 2021. https://doi.org/10.1007/s13201-021-013 98-1
- N. Özgül, Toros’ların bazı temel özellikleri. Türkiye Jeoloji Kurumu Bülteni, 19(1), 65-78, 1976.
- T. Bilgiç, 1/100000 ölçekli Türkiye Jeoloji Haritaları Karaman-N31, No:129, MTA Genel Müdürlüğü Jeoloji Etütleri Dairesi, 2009. Ankara.
- Ü. Ulu, A.K. Bulduk, E. Ekmekçi, M. Karakaş, H. Öcal, A. Arbas, L. Saçlı, Taşkıran, M.A. Adır, M. Sözeri, Ş. Karabıyıkoğlu, M. İnlice-Akkise ve Cihanbeyli-Karapınar alanının jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor no: 9720, s. 219, 1994.
- Ü. Ulu, V. Balcı, 1:100 000 Ölçekli Türkiye Jeoloji Haritaları Karaman-N30 Paftası. No: 128, Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi, 2009.
- M.A. Gül. Ö. Çuhadar, Y. Öztaş, H. Aklan, T. Efeçınar, Bolkar Dağı- Belemedik yöresinin jeolojisi ve petrol olanakları,. TPAO arama Grubu Dökümantasyon Merkezi, 159s, 1984.
- M. Şenel, H. Selçuk, Z.R. Bilgin, M.A. Şen, T. Karaman, M.A. Dinçer, E. Durukan, A. Arbas, S. Örçen, C. Bilgi, Çameli (Denizli), Yeşilova (Burdur), Elmalı (Antalya) ve dolayının jeolojisi, Maden Tetkik ve Arama Genel Müdürlüğü Rapor no: 9429, s. 344, 1989.
- DSİ, Karaman-Ayrancı ve Akçaşehir Ovaları Hidrojeolojik Etüt Raporu. Enerji ve Tabii Kaynaklar Bakanlığı Devlet Su İşleri Genel Müdürlüğü Yayını, 1975.
- A. Şahinci, Doğal Suların Jeokimyası, Reform Matbaası, 546, 1991.
- F.H. Azaza, M. Ketata, R. Bouhlila, M. Gueddari, L. Riberio, Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia. Environmental Monitoring Assessment, 174, 283–298, 2011. https:// doi.org/10.1007/s10661-010-1457-9.
- M. Kumar, A.L. Ramanathan, M.S. Rao, B. Kumar, Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50(7), 1025-1039, 2006. https://doi.org/10.1007/s00254-006-0275-4
- E. Lakshmanan, R. Kannan, M. Senthil-Kumar, Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 1(4), 157-166, 2003. https://doi.org/10.1 306/eg100403011
- R.J. Gibbs, Mechanism controlling world water chemistry. Science, 170, 795-840, 1970.
- N. Aghazadeh, A.A. Mogaddam, Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental Monitoring Assessment, 176, 183–195, 2011. https:// doi.org/10.1007/s10661-010-1575-4
- A. Davraz, A. Özdemir, Groundwater quality assessment and its suitability in Çeltikçi plain (Burdur/Turkey). Environmental Earth Science, 72, 1167–1190, 2014. https://doi.org/10.1007/s12665-013-3036-1
- A. Davraz, B. Batur, Hydrogeochemistry characteristics of groundwater and health risk assessment in Yalvaç–Gelendost basin (Turkey). Applied Water Science, 11(4), 67, 2021. https://doi .org/10.1007/s13201-021-01401-9
- S. Kuldip, H.S. Hundal, S. Dhanwinder, Geochemistry and Assessment of Hydrogeochemical Processes in Groundwater in the Southern Part of Bathinda District of Punjab, Northwest India. Environmental Earth Science, 64, 1823-1833, 2011. https://doi.org/10.1007/ s12665-011-0989-9.
- A.L. Mayo, M.D. Loucks, Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172, 31–59, 1995. https://doi.org/10.1016/0022-1694(95)0274 8-E
- R. Rajesh, K. Brindha, R. Murugan, L. Elango, Influence of hydro-geochemical processes on temporal changes in groundwater qual-ity in a part of Nalgonda district, Andhra Pradesh, India. Environmental Earth Science, 65, 1203-1213, 2011. https://doi.org/10.1007/ s12 665-011-1368-2
- T. Subramani, N. Rajmohan, L. Elango, Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring Assessment, 162, 123-137, 2010. https://doi.org/10.1007/s10661-009-0781-4.
- B.K. Das, P. Kaur, Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Environmental Geology, 40, 908-917, 2001. https://doi.org/10.1007/s002540100268
- A. Kumar Singh, G.C. Mondal, T.B. Singh, S. Singh, B.K. Tewary, A. Sinha, Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environmetal Earth Science, 67, 2175-2191, 2012. https://doi.org/10.1007/s12665-012-1658-3.
- K. Pazand, A. Hezarkhani, Y. Ghanbari, N. Aghavali, Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Science, 67, 1131–1143, 2012. https://doi.org/10.1007/s12665-012-1557-7.
- N. Rajmohan, L. Elango, Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar river basins, Southern India. Environmental Geology, 46, 47-61, 2004. https://doi.org/10.1007/s00254-004-1012 -5
- S.K. Tyagi, P.S. Datta, N.K. Pruthi, Hydrochemical appraisal ofgroundwater and its suitability in the intensive agricultural areaof Muzaffarnagar district, Uttar Pradesh, India. Environmental Geology, 56, 5, 901-912, 2009. https://doi.org/10.1007/s00254-008-11 90-7.
- H. Schoeller, Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Research, Series-33 (pp. 44–52) Paris: UNESCO, 1967.
- H. Schoeller, Geochemistry of groundwater in Groundwater studies-An International guide for research and practice Paris UNESCO, Chap 15:1-18, 1977.
- F.K. Zaidi, Y. Nazzal, M.K. Jafri, M. Naeem, I. Ahmed, Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environmental Monitoring Assessment, 187, 607, 2015. https://doi.org/10.1007/s10661-015-4828-4
- F.K. Zaidi, A. Salman, S. Hag-Elsafi, H.J. Alfaifi, Assessment of hydrological processes operating in a multi-layered sedimentary aquifer system in Saudi Arabia using integrated chemical and statistical approach. Environmental monitoring and assessment, 191, 1-18, 2019. https://doi.org/10.1007/s10661-019-7597-7
- M. Mayback, Global Chemical Weathering of Surficial Rocks Estimated from River-Dissolved Loads., American Journal of Science, 287, 401-428, 1987.
- M.G. Garcia, M. Hidalgo, M.A. Blesa, Geochemistry of groundwater in the alluvial plain of Tucum´an province, Argentina. Hydrogeology Journal, 9, 597-610, 2001. https://doi.org/10.1007/s10040-001-0166-4.
- C.K. Tay, Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Science, 67, 2077-2087, 2012. https://doi.org/10.1007/s12665-012-1647-6
- A.M. Piper, A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, 25, 914-923, 1944. https://doi.org/10.1029/TR025i006p00914
- D.K. Chadha, A proposed new diagram for geochemical classifcation of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439, 1999. https://doi.org/10.1007/s100400050 216
- W. Back, Hydrochemical Facies and Ground-Water Flow Patterns in Northern Part of Atlantic Coastal Plain, 498-A, 1-42, 1966.
- P.J. Sajil Kumar, Interpretation of groundwater chemistry using piper and chadha´s diagrams: a comparative study from perambalur taluk. Elixir Geoscience, 54, 12208-12211, 2013.
Jeokimyasal süreçler ve yeraltısuyu kimyası: Akçaşehir Ovası (Karaman) örneği
Yıl 2024,
Cilt: 13 Sayı: 4, 1526 - 1537, 15.10.2024
Fatma Aksever
,
Ayşen Davraz
Öz
Bu çalışmada, Akçaşehir (Karaman) bölgesi yeraltısularının hidrokimyasal yapısı ve bu yapıyı oluşturan faktörler kimyasal analiz verileri kullanılarak araştırılmıştır. Değerlendirmelerde yeraltısuyunun kimyasal bileşiminin kökeni ve kontrol mekanizmaları; iyon oranı analizi, korelasyon analizi ve diğer hidrojeokimyasal yöntemlerle belirlenmiştir. Akçaşehir ovası Karaman ilinin kuzeydoğusunda yer almaktadır. Ova üzerinde yeraltısuyu temininde kullanılan çok sayıda sondaj kuyusu yer almaktadır. İnceleme alanının temelini Bolkar Dağı Birliği’ne ait allokton kayalar oluşturmaktadır. Bölgede serbest akifer özelliğindeki güncel çökeller ve sahip kireçtaşları yeraltısuyu bulunduran önemli akiferlerdir. Çalışmada su örneklerinin %74’ünün Mg-Ca-HCO3/Ca-Mg-HCO3’lı sular fasiyesinde olduğu belirlenmiştir. Bu yapıyı oluşturan en etkin hidrojeokimyasal süreç karbonat çözünümüdür. Bazı örneklerde tespit edilen Na+ ve SO4-2 artışları silikat ayrışması ve iyon değişim süreçleri ile ilişkilidir. Genel olarak alanda su-kayaç etkileşiminin hidrojeokimyasal süreçleri doğrudan etkilediği belirlenmiştir.
Kaynakça
- J. Liu, K. Lou, Z. Gao, M. Tan, Hydrochemical insights on the signatures and genesis of water resources in a high-altitude city on the Qinghai-Xizang Plateau, South-west China. Frontiers of Environmental Science & Engineering, 18(7), 88, 2024. https://doi.or g/10.1007/s11783-024-1848-8
- R.M. Kurakalva, G. Kuna, S.P. Vaiphei, S.S: Guddeti. Evaluation of hydrogeochemical profile, potential health risk and groundwater quality in rapidly growing urban region of Hyderabad, South India. Environmental Earth Sciences, 80(10), 383. 2021. https://doi.org/10.1007/s12665-021-09661-z
- L. Surinaidu, Role of hydrogeochemical process in increasing groundwater salinity in the central Godavari delta. Hydrology Research, 47 (2), 373–389, 2016. https://doi.org/10.2166/nh.2015.050
- C.A.J. Appelo, D. Postma, Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema, Rotterdam, 1999.
- J.D. Hem, The study and interpretation of the chemical characteristics of natural water, 3rd edn. USGS Water Supply Paper 2254, US Geological Survey, 1989.
- A.W. Hounslow. Water quality data analysis and interpretation. Lewis Publishers, 1995.
- L. Andre, M. Franceschi, P. Pouchan, O. Atteia, Using geochemical data and modeling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305, 40–62, 2005. https://doi.org/10.10 16/j.jhydrol.2004.08.027
- M. Jalali, Assessment of the chemical components of Famenin groundwater, western Iran. Environmental Geochemistry and Health, 29, 357–374, 2007. https:// doi.org/10.1007/s10653-006-9080-y
- A.K. Singh, G.C. Mondal, S. Kumar, T.B. Singh, B.K. Tewary, A. Sinha, Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar river basin. India Environmental Geology, 54, 745–758, 2008. https:// doi.org/10.1007/s00254-007-0860-1
- B.M. Shakya, T. Nakamura, S.D. Shrestha, K. Nishida, Identifying the deep groundwater recharge processes in an intermountain basin using the hydrogeochemical and water isotope characteristics. Hydrology Research, 50(5), 1216–1229, 2019. https://doi.org/10.2166/nh.20 19.164
- C.K. Tay, Hydrogeochemical framework of groundwater within the Asutifi-North District of the Brong-Ahafo Region, Ghana. Applied Water Science, 11(4), 72, 2021. https://doi.org/10.1007/s13201-021-013 98-1
- N. Özgül, Toros’ların bazı temel özellikleri. Türkiye Jeoloji Kurumu Bülteni, 19(1), 65-78, 1976.
- T. Bilgiç, 1/100000 ölçekli Türkiye Jeoloji Haritaları Karaman-N31, No:129, MTA Genel Müdürlüğü Jeoloji Etütleri Dairesi, 2009. Ankara.
- Ü. Ulu, A.K. Bulduk, E. Ekmekçi, M. Karakaş, H. Öcal, A. Arbas, L. Saçlı, Taşkıran, M.A. Adır, M. Sözeri, Ş. Karabıyıkoğlu, M. İnlice-Akkise ve Cihanbeyli-Karapınar alanının jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor no: 9720, s. 219, 1994.
- Ü. Ulu, V. Balcı, 1:100 000 Ölçekli Türkiye Jeoloji Haritaları Karaman-N30 Paftası. No: 128, Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi, 2009.
- M.A. Gül. Ö. Çuhadar, Y. Öztaş, H. Aklan, T. Efeçınar, Bolkar Dağı- Belemedik yöresinin jeolojisi ve petrol olanakları,. TPAO arama Grubu Dökümantasyon Merkezi, 159s, 1984.
- M. Şenel, H. Selçuk, Z.R. Bilgin, M.A. Şen, T. Karaman, M.A. Dinçer, E. Durukan, A. Arbas, S. Örçen, C. Bilgi, Çameli (Denizli), Yeşilova (Burdur), Elmalı (Antalya) ve dolayının jeolojisi, Maden Tetkik ve Arama Genel Müdürlüğü Rapor no: 9429, s. 344, 1989.
- DSİ, Karaman-Ayrancı ve Akçaşehir Ovaları Hidrojeolojik Etüt Raporu. Enerji ve Tabii Kaynaklar Bakanlığı Devlet Su İşleri Genel Müdürlüğü Yayını, 1975.
- A. Şahinci, Doğal Suların Jeokimyası, Reform Matbaası, 546, 1991.
- F.H. Azaza, M. Ketata, R. Bouhlila, M. Gueddari, L. Riberio, Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss–Koutine aquifer, southeastern Tunisia. Environmental Monitoring Assessment, 174, 283–298, 2011. https:// doi.org/10.1007/s10661-010-1457-9.
- M. Kumar, A.L. Ramanathan, M.S. Rao, B. Kumar, Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50(7), 1025-1039, 2006. https://doi.org/10.1007/s00254-006-0275-4
- E. Lakshmanan, R. Kannan, M. Senthil-Kumar, Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu, India. Environmental Geosciences, 1(4), 157-166, 2003. https://doi.org/10.1 306/eg100403011
- R.J. Gibbs, Mechanism controlling world water chemistry. Science, 170, 795-840, 1970.
- N. Aghazadeh, A.A. Mogaddam, Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran. Environmental Monitoring Assessment, 176, 183–195, 2011. https:// doi.org/10.1007/s10661-010-1575-4
- A. Davraz, A. Özdemir, Groundwater quality assessment and its suitability in Çeltikçi plain (Burdur/Turkey). Environmental Earth Science, 72, 1167–1190, 2014. https://doi.org/10.1007/s12665-013-3036-1
- A. Davraz, B. Batur, Hydrogeochemistry characteristics of groundwater and health risk assessment in Yalvaç–Gelendost basin (Turkey). Applied Water Science, 11(4), 67, 2021. https://doi .org/10.1007/s13201-021-01401-9
- S. Kuldip, H.S. Hundal, S. Dhanwinder, Geochemistry and Assessment of Hydrogeochemical Processes in Groundwater in the Southern Part of Bathinda District of Punjab, Northwest India. Environmental Earth Science, 64, 1823-1833, 2011. https://doi.org/10.1007/ s12665-011-0989-9.
- A.L. Mayo, M.D. Loucks, Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology, 172, 31–59, 1995. https://doi.org/10.1016/0022-1694(95)0274 8-E
- R. Rajesh, K. Brindha, R. Murugan, L. Elango, Influence of hydro-geochemical processes on temporal changes in groundwater qual-ity in a part of Nalgonda district, Andhra Pradesh, India. Environmental Earth Science, 65, 1203-1213, 2011. https://doi.org/10.1007/ s12 665-011-1368-2
- T. Subramani, N. Rajmohan, L. Elango, Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring Assessment, 162, 123-137, 2010. https://doi.org/10.1007/s10661-009-0781-4.
- B.K. Das, P. Kaur, Major ion chemistry of Renuka lake and weathering processes, Sirmaur district, Himachal Pradesh, India. Environmental Geology, 40, 908-917, 2001. https://doi.org/10.1007/s002540100268
- A. Kumar Singh, G.C. Mondal, T.B. Singh, S. Singh, B.K. Tewary, A. Sinha, Hydrogeochemical processes and quality assessment of groundwater in Dumka and Jamtara districts, Jharkhand, India. Environmetal Earth Science, 67, 2175-2191, 2012. https://doi.org/10.1007/s12665-012-1658-3.
- K. Pazand, A. Hezarkhani, Y. Ghanbari, N. Aghavali, Geochemical and quality assessment of groundwater of Marand Basin, East Azarbaijan Province, northwestern Iran. Environmental Earth Science, 67, 1131–1143, 2012. https://doi.org/10.1007/s12665-012-1557-7.
- N. Rajmohan, L. Elango, Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar river basins, Southern India. Environmental Geology, 46, 47-61, 2004. https://doi.org/10.1007/s00254-004-1012 -5
- S.K. Tyagi, P.S. Datta, N.K. Pruthi, Hydrochemical appraisal ofgroundwater and its suitability in the intensive agricultural areaof Muzaffarnagar district, Uttar Pradesh, India. Environmental Geology, 56, 5, 901-912, 2009. https://doi.org/10.1007/s00254-008-11 90-7.
- H. Schoeller, Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigation and development. Water Research, Series-33 (pp. 44–52) Paris: UNESCO, 1967.
- H. Schoeller, Geochemistry of groundwater in Groundwater studies-An International guide for research and practice Paris UNESCO, Chap 15:1-18, 1977.
- F.K. Zaidi, Y. Nazzal, M.K. Jafri, M. Naeem, I. Ahmed, Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environmental Monitoring Assessment, 187, 607, 2015. https://doi.org/10.1007/s10661-015-4828-4
- F.K. Zaidi, A. Salman, S. Hag-Elsafi, H.J. Alfaifi, Assessment of hydrological processes operating in a multi-layered sedimentary aquifer system in Saudi Arabia using integrated chemical and statistical approach. Environmental monitoring and assessment, 191, 1-18, 2019. https://doi.org/10.1007/s10661-019-7597-7
- M. Mayback, Global Chemical Weathering of Surficial Rocks Estimated from River-Dissolved Loads., American Journal of Science, 287, 401-428, 1987.
- M.G. Garcia, M. Hidalgo, M.A. Blesa, Geochemistry of groundwater in the alluvial plain of Tucum´an province, Argentina. Hydrogeology Journal, 9, 597-610, 2001. https://doi.org/10.1007/s10040-001-0166-4.
- C.K. Tay, Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Science, 67, 2077-2087, 2012. https://doi.org/10.1007/s12665-012-1647-6
- A.M. Piper, A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Trans. Amer. Geophys. Union, 25, 914-923, 1944. https://doi.org/10.1029/TR025i006p00914
- D.K. Chadha, A proposed new diagram for geochemical classifcation of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439, 1999. https://doi.org/10.1007/s100400050 216
- W. Back, Hydrochemical Facies and Ground-Water Flow Patterns in Northern Part of Atlantic Coastal Plain, 498-A, 1-42, 1966.
- P.J. Sajil Kumar, Interpretation of groundwater chemistry using piper and chadha´s diagrams: a comparative study from perambalur taluk. Elixir Geoscience, 54, 12208-12211, 2013.