Research Article
BibTex RIS Cite

PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği

Year 2025, Volume: 14 Issue: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1500951

Abstract

Küresel iklim değişikliği süreçlerinin daha iyi anlaşılabilmesi ve insanlığın gelecekteki süreçlere uyum sağlayabilmesi açısından buzul alanlardaki değişikliklerin izlenmesi önem taşımaktadır. Buzul değişimlerinin takibi için kullanılan yöntemlerden birisi olan insansız hava aracı (İHA) fotogrametrisi ile kriyosferin ve buzul değişikliklerinin yüksek konumsal doğrulukla izlenebilmesi için küresel konum belirleme sistemlerine (Global Navigation Satellite System-GNSS) dayanan konum belirleme yöntemleri kullanılmaktadır. Bu çalışmada Antarktika'da, Türk Bilimsel Araştırma Kampı'na ev sahipliği yapan Horseshoe Adası'nda, buzul takibi amacıyla belirlenen bir test alanında kinematik ölçme sonrası değerlendirme (Post Processing Kinematic-PPK) yöntemi kullanılarak üretilen fotogrametrik ürünlerin konumsal doğruluğu araştırılmıştır. Hava fotoğraflarından hareket ile nesne oluşturma (Structure from Motion-SfM) yöntemine dayanarak üretilen ortofoto ve sayısal yükseklik modelinin (SYM) konum doğruluğu, arazide klasik gerçek zamanlı kinematik (Real Time Kinematic-RTK) konum belirleme yöntemiyle konumları belirlenmiş yer kontrol noktaları kullanılarak elde edilmiştir. Yatay ve düşey koordinatlar için hesaplanan karesel ortalama hata değerleri sırasıyla 1.05 cm, 0.52 cm ve 11.33 cm’dir.

Project Number

121N033

References

  • J. Turner and G. J. Marshall, Climate change in the polar regions. Cambridge University Press, UK, 2011.
  • IPCC, IPCC Sixth Assessment Report: Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/re port/ar6/wg2/, Accessed 5 May 2024.
  • D. Jayaram, Geopolitics, Environmental Change and Antarctic Governance: A Region in Need of a Transformative Approach to Science Diplomacy. in Assessing the Antarctic Environment from a Climate Change Perspective, N. Khare, Ed., Earth and Environmental Sciences Library., Cham: Springer International Publishing, 2022, pp. 1-17. https://doi.org/10.1007/978-3-030-87078-2_1
  • J. Turner and J. Overland, Contrasting climate change in the two polar regions, Polar Res., 28(2), 146-164, 2009. https://doi.org/10.1111/j.1751-8369.2009.0012 8.x
  • A. Bhardwaj, P. K. Joshi, L. Sam and Snehmani, Remote sensing of alpine glaciers in visible and infrared wavelengths: a survey of advances and prospects, Geocarto Int., 31 (5), 557-574, 2016. https://doi.org/10.1080/10106049.2015.1059903
  • R. Ramsankaran, P. J. Navinkumar, A. Dashora and A. V. Kulkarni, UAV-Based Survey of Glaciers in Himalayas: Challenges and Recommendations. J. Indian Soc. Remote Sens., 49 (5), 1171-1187, 2021. https://doi.org/10.1007/s12524-020-01300-7
  • K. Lamsters, J. Karušs, M. Krievāns and J. Ješkins, High-resolution orthophoto map and digital surface models of the largest Argentine Islands (the Antarctic) from unmanned aerial vehicle photogrammetry. J. Maps, 16 (2), 335-347, 2020. https://doi.org/10.1080 /17445647.2020.1748130
  • A. Lucieer, D. Turner, D. H. King and S. A. Robinson, Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinformation, 27, 53-62, 2014. https:// doi.org/10.1016/j.jag.2013.05.011
  • P. Pina and G. Vieira, UAVs for science in Antarctica, Remote Sens., 14 (7), 1610, 2022. https://doi.org/10.3 390/rs14071610
  • M. Dąbski, A. Zmarz, P. Pabjanek, M. Korczak-Abshire, I. Karsznia and K. J. Chwedorzewska, UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology, 290, 29-38, 2017. https://doi.org/10.1016/j.geomorph.2017 .03.033
  • G. Tarca, M. Guglielmin, P. Convey, M. R. Worland and N. Cannone, Small-scale spatial–temporal variability in snow cover and relationships with vegetation and climate in maritime Antarctica. Catena, 208, 105739, 2022. https://doi.org/10.1016/j.catena.20 21.105739
  • J. Tomaštík, M. Mokroš, P. Surovỳ, A. Grznárová and J. Merganič, UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?. Remote Sens., 11 (6), 721, 2019. https://doi.org/10.33 90/rs11060721
  • T. Tarık ve T. ÖCALAN, PPK GNSS sistemine sahip insansız hava araçları ile elde edilen fotogrametrik ürünlerin doğruluğunun farklı yaklaşımlarla irde lenmesi, Türkiye Fotogram. Derg., (1), 22-28, 20 20.
  • P. Martínez-Carricondo, F. Agüera-Vega and F. Carvajal-Ramírez, Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations. Geocarto Int., 38 (1), 2197507, 2023. https://doi.org/ 10.1080/10106049.2023.2197507
  • D. P. Bliakharskii and I. V. Florinsky, Unmanned aerial survey for modelling glacier topography in Antarctica: first results. Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management, 319-326, 2018.
  • T. R. Chudley, P. Christoffersen, S. H. Doyle, A. Abellan, ve N. Snooke, High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control, The Cryosphere, 13(3), 955-968, 2019. https://doi.org/10.5194/tc-13-955-2019
  • Belloni vd., High-resolution high-accuracy orthophoto map and digital surface model of Forni Glacier tongue (Central Italian Alps) from UAV photogrammetry”, J. Maps, 19(1), 2217508, 2023. https://doi.org/10.1080/ 17445647.2023.2217508
  • L. Tang, G. Qiao, B. Li, X. Yuan, H. Ge and S. Popov, GNSS-supported direct georeferencing for UAV photogrammetry without GCP in Antarctica: a case study in Larsemann Hills. Mar. Geod., 1-28, 2024. https://doi.org/10.1080/01490419.2024.2316089
  • I. Owens ve P. Zawar-Reza, Weather and Climate, içinde Exploring the Last Continent: An Introduction to Antarctica, D. Liggett, B. Storey, Y. Cook, ve V. Meduna, Ed., Cham: Springer International Publishing, 91-114, 2015.
  • NSF, Ice Sheets, https://www.nsf.gov/geo/opp/antarct /science/icesheet.jsp, Accessed 19 Sep 2024.
  • N. Mölg ve T. Bolch, Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation, Remote Sens., 9(10), 10, 2017. https://doi.org/10.3390/rs9101021
  • C. Yıldırım, Geomorphology of Horseshoe Island, Marguerite Bay, Antarctica. J. Maps, 16(2), 56-67, 20 20. https://doi.org/10.1080/17445647.2019.169270 0
  • A. E. Frazier and K. K. Singh, Fundamentals of capturing and processing drone imagery and data. CRC Press, USA, 2021
  • E. Ferrer-González, F. Agüera-Vega, F. Carvajal-Ramírez and P. Martínez-Carricondo, UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sens., 12 (15), 2447, 2020. https://doi.org/10.3390/rs12152447
  • B. Ruzgienė, T. Berteška, S. Gečyte, E. Jakubauskienė and V. Č. Aksamitauskas, The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619-627, 2015. https://doi.org/10.1 016/j.measurement.2015.04.018
  • A. S. Pillai, S. Mahato, M. Goswami, P. Banerjee and A. Bose, Potential of GNSS Post Processing Kinematic (PPK) Technique for Test Range Surveying Applications using Compact, Low Cost GNSS Modules. 2022 URSI Regional Conference on Radio Science (USRI-RCRS), 1-4, 2022. https://doi.org/10 .23919/URSI-RCRS56822.2022.10118459
  • S. Del Pizzo, A. Angrisano, P. Aucelli, G. Cappello, G. Mattei and S. Troisi, Coastal monitoring assessment using a low-cost PPK-UAV setup for photogrammetric survey. 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), 187-191, 2023. https://doi.org /10.1109/MetroSea58055.2023.10317484
  • Emlid, How PPK works. https://docs.emlid.com/reach /tutorials/basics/ppk-introduction/, Accessed 10 May 2024.
  • Dji, https://www.dji.com/global/support/product/phan tom-4-pro, Accessed 19 Sep 2024.

Investigation of the positional accuracy of orthophoto and DEM Products generated from UAV data with the PPK method: A case study of Horseshoe Island, Antarctica

Year 2025, Volume: 14 Issue: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1500951

Abstract

Monitoring changes in glacial areas is important for a better understanding of global climate change processes and adaptation of humanity to future processes. Unmanned aerial vehicle (UAV) photogrammetry, one of the methods used to monitor glacier changes, uses positioning methods based on global navigation satellite systems (GNSS) to monitor cryosphere and glacier changes with high positional accuracy. In this study, the positional accuracy of photogrammetric products generated using the Post Processing Kinematic (PPK) method was investigated in a test area designated for glacier monitoring on Horseshoe Island, which hosts the Turkish Scientific Research Camp in Antarctica. The positional accuracy of the orthophoto and digital elevation model (DEM) generated based on the Structure from Motion (SfM) method using aerial photographs was determined with ground control points whose positions were determined using the classical real-time kinematic positioning (RTK) method in the field. The root mean square error values calculated for horizontal and vertical coordinates are 1.05 cm, 0.52 cm, and 11.33 cm, respectively.

Project Number

121N033

References

  • J. Turner and G. J. Marshall, Climate change in the polar regions. Cambridge University Press, UK, 2011.
  • IPCC, IPCC Sixth Assessment Report: Impacts, Adaptation and Vulnerability. https://www.ipcc.ch/re port/ar6/wg2/, Accessed 5 May 2024.
  • D. Jayaram, Geopolitics, Environmental Change and Antarctic Governance: A Region in Need of a Transformative Approach to Science Diplomacy. in Assessing the Antarctic Environment from a Climate Change Perspective, N. Khare, Ed., Earth and Environmental Sciences Library., Cham: Springer International Publishing, 2022, pp. 1-17. https://doi.org/10.1007/978-3-030-87078-2_1
  • J. Turner and J. Overland, Contrasting climate change in the two polar regions, Polar Res., 28(2), 146-164, 2009. https://doi.org/10.1111/j.1751-8369.2009.0012 8.x
  • A. Bhardwaj, P. K. Joshi, L. Sam and Snehmani, Remote sensing of alpine glaciers in visible and infrared wavelengths: a survey of advances and prospects, Geocarto Int., 31 (5), 557-574, 2016. https://doi.org/10.1080/10106049.2015.1059903
  • R. Ramsankaran, P. J. Navinkumar, A. Dashora and A. V. Kulkarni, UAV-Based Survey of Glaciers in Himalayas: Challenges and Recommendations. J. Indian Soc. Remote Sens., 49 (5), 1171-1187, 2021. https://doi.org/10.1007/s12524-020-01300-7
  • K. Lamsters, J. Karušs, M. Krievāns and J. Ješkins, High-resolution orthophoto map and digital surface models of the largest Argentine Islands (the Antarctic) from unmanned aerial vehicle photogrammetry. J. Maps, 16 (2), 335-347, 2020. https://doi.org/10.1080 /17445647.2020.1748130
  • A. Lucieer, D. Turner, D. H. King and S. A. Robinson, Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinformation, 27, 53-62, 2014. https:// doi.org/10.1016/j.jag.2013.05.011
  • P. Pina and G. Vieira, UAVs for science in Antarctica, Remote Sens., 14 (7), 1610, 2022. https://doi.org/10.3 390/rs14071610
  • M. Dąbski, A. Zmarz, P. Pabjanek, M. Korczak-Abshire, I. Karsznia and K. J. Chwedorzewska, UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology, 290, 29-38, 2017. https://doi.org/10.1016/j.geomorph.2017 .03.033
  • G. Tarca, M. Guglielmin, P. Convey, M. R. Worland and N. Cannone, Small-scale spatial–temporal variability in snow cover and relationships with vegetation and climate in maritime Antarctica. Catena, 208, 105739, 2022. https://doi.org/10.1016/j.catena.20 21.105739
  • J. Tomaštík, M. Mokroš, P. Surovỳ, A. Grznárová and J. Merganič, UAV RTK/PPK method—an optimal solution for mapping inaccessible forested areas?. Remote Sens., 11 (6), 721, 2019. https://doi.org/10.33 90/rs11060721
  • T. Tarık ve T. ÖCALAN, PPK GNSS sistemine sahip insansız hava araçları ile elde edilen fotogrametrik ürünlerin doğruluğunun farklı yaklaşımlarla irde lenmesi, Türkiye Fotogram. Derg., (1), 22-28, 20 20.
  • P. Martínez-Carricondo, F. Agüera-Vega and F. Carvajal-Ramírez, Accuracy assessment of RTK/PPK UAV-photogrammetry projects using differential corrections from multiple GNSS fixed base stations. Geocarto Int., 38 (1), 2197507, 2023. https://doi.org/ 10.1080/10106049.2023.2197507
  • D. P. Bliakharskii and I. V. Florinsky, Unmanned aerial survey for modelling glacier topography in Antarctica: first results. Proceedings of the 4th International Conference on Geographical Information Systems Theory, Applications and Management, 319-326, 2018.
  • T. R. Chudley, P. Christoffersen, S. H. Doyle, A. Abellan, ve N. Snooke, High-accuracy UAV photogrammetry of ice sheet dynamics with no ground control, The Cryosphere, 13(3), 955-968, 2019. https://doi.org/10.5194/tc-13-955-2019
  • Belloni vd., High-resolution high-accuracy orthophoto map and digital surface model of Forni Glacier tongue (Central Italian Alps) from UAV photogrammetry”, J. Maps, 19(1), 2217508, 2023. https://doi.org/10.1080/ 17445647.2023.2217508
  • L. Tang, G. Qiao, B. Li, X. Yuan, H. Ge and S. Popov, GNSS-supported direct georeferencing for UAV photogrammetry without GCP in Antarctica: a case study in Larsemann Hills. Mar. Geod., 1-28, 2024. https://doi.org/10.1080/01490419.2024.2316089
  • I. Owens ve P. Zawar-Reza, Weather and Climate, içinde Exploring the Last Continent: An Introduction to Antarctica, D. Liggett, B. Storey, Y. Cook, ve V. Meduna, Ed., Cham: Springer International Publishing, 91-114, 2015.
  • NSF, Ice Sheets, https://www.nsf.gov/geo/opp/antarct /science/icesheet.jsp, Accessed 19 Sep 2024.
  • N. Mölg ve T. Bolch, Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation, Remote Sens., 9(10), 10, 2017. https://doi.org/10.3390/rs9101021
  • C. Yıldırım, Geomorphology of Horseshoe Island, Marguerite Bay, Antarctica. J. Maps, 16(2), 56-67, 20 20. https://doi.org/10.1080/17445647.2019.169270 0
  • A. E. Frazier and K. K. Singh, Fundamentals of capturing and processing drone imagery and data. CRC Press, USA, 2021
  • E. Ferrer-González, F. Agüera-Vega, F. Carvajal-Ramírez and P. Martínez-Carricondo, UAV photogrammetry accuracy assessment for corridor mapping based on the number and distribution of ground control points. Remote Sens., 12 (15), 2447, 2020. https://doi.org/10.3390/rs12152447
  • B. Ruzgienė, T. Berteška, S. Gečyte, E. Jakubauskienė and V. Č. Aksamitauskas, The surface modelling based on UAV Photogrammetry and qualitative estimation. Measurement, 73, 619-627, 2015. https://doi.org/10.1 016/j.measurement.2015.04.018
  • A. S. Pillai, S. Mahato, M. Goswami, P. Banerjee and A. Bose, Potential of GNSS Post Processing Kinematic (PPK) Technique for Test Range Surveying Applications using Compact, Low Cost GNSS Modules. 2022 URSI Regional Conference on Radio Science (USRI-RCRS), 1-4, 2022. https://doi.org/10 .23919/URSI-RCRS56822.2022.10118459
  • S. Del Pizzo, A. Angrisano, P. Aucelli, G. Cappello, G. Mattei and S. Troisi, Coastal monitoring assessment using a low-cost PPK-UAV setup for photogrammetric survey. 2023 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), 187-191, 2023. https://doi.org /10.1109/MetroSea58055.2023.10317484
  • Emlid, How PPK works. https://docs.emlid.com/reach /tutorials/basics/ppk-introduction/, Accessed 10 May 2024.
  • Dji, https://www.dji.com/global/support/product/phan tom-4-pro, Accessed 19 Sep 2024.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Photogrametry, Satellite-Based Positioning
Journal Section Articles
Authors

Esra Günaydın 0000-0003-1868-0887

Mahmut Oğuz Selbesoğlu 0000-0002-1132-3978

Mustafa Fahri Karabulut 0000-0001-8513-3475

Oleg Vassilev 0000-0002-8407-8416

Burak Akpınar 0000-0002-3076-1578

Mustafa Yanalak 0000-0001-6805-8768

Özgün Oktar 0000-0002-0188-6267

Burcu Özsoy 0000-0003-4320-1796

Project Number 121N033
Early Pub Date December 10, 2024
Publication Date
Submission Date June 17, 2024
Acceptance Date October 2, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Günaydın, E., Selbesoğlu, M. O., Karabulut, M. F., Vassilev, O., et al. (2024). PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1500951
AMA Günaydın E, Selbesoğlu MO, Karabulut MF, Vassilev O, Akpınar B, Yanalak M, Oktar Ö, Özsoy B. PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği. NOHU J. Eng. Sci. December 2024;14(1):1-1. doi:10.28948/ngumuh.1500951
Chicago Günaydın, Esra, Mahmut Oğuz Selbesoğlu, Mustafa Fahri Karabulut, Oleg Vassilev, Burak Akpınar, Mustafa Yanalak, Özgün Oktar, and Burcu Özsoy. “PPK yöntemi Ile İHA Verilerinden üretilen Ortofoto Ve SYM ürünlerinin Konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (December 2024): 1-1. https://doi.org/10.28948/ngumuh.1500951.
EndNote Günaydın E, Selbesoğlu MO, Karabulut MF, Vassilev O, Akpınar B, Yanalak M, Oktar Ö, Özsoy B (December 1, 2024) PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE E. Günaydın, M. O. Selbesoğlu, M. F. Karabulut, O. Vassilev, B. Akpınar, M. Yanalak, Ö. Oktar, and B. Özsoy, “PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 1–1, 2024, doi: 10.28948/ngumuh.1500951.
ISNAD Günaydın, Esra et al. “PPK yöntemi Ile İHA Verilerinden üretilen Ortofoto Ve SYM ürünlerinin Konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (December 2024), 1-1. https://doi.org/10.28948/ngumuh.1500951.
JAMA Günaydın E, Selbesoğlu MO, Karabulut MF, Vassilev O, Akpınar B, Yanalak M, Oktar Ö, Özsoy B. PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği. NOHU J. Eng. Sci. 2024;14:1–1.
MLA Günaydın, Esra et al. “PPK yöntemi Ile İHA Verilerinden üretilen Ortofoto Ve SYM ürünlerinin Konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2024, pp. 1-1, doi:10.28948/ngumuh.1500951.
Vancouver Günaydın E, Selbesoğlu MO, Karabulut MF, Vassilev O, Akpınar B, Yanalak M, Oktar Ö, Özsoy B. PPK yöntemi ile İHA verilerinden üretilen ortofoto ve SYM ürünlerinin konumsal doğruluğunun araştırılması: Antarktika’daki Horseshoe Adası örneği. NOHU J. Eng. Sci. 2024;14(1):1-.

download