Research Article
BibTex RIS Cite

Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması

Year 2025, Volume: 14 Issue: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1529614

Abstract

Görüntü segmentasyonu alanında sıklıkla kullanılan eşiklemeye dayalı segmentasyon yöntemleri, az sayıdaki eşik değerinin belirlenmesinde başarılıdır. Fakat eşik seviye sayısı arttıkça hesaplama karmaşıklığında üstel artış meydana gelmektedir. Bu nedenle problemin çözümünde meta sezgisel arama algoritmaları tercih edilmektedir. Bu çalışmada görüntü segmentasyonu literatüründe en çok kullanılan 11 meta sezgisel algoritmanın (yapay arı kolonisi, guguk kuşu arama, diferansiyel evrim, gri kurt optimizasyonu, harris şahini optimizasyonu, güve-alev optimizasyonu, parçacık sürüsü optimizasyonu, sinüs kosinüs algoritması, simbiyotik organizmalar arama, salp sürü algoritması, balina optimizasyon algoritması) performansı kıyaslanmıştır. m=2,3,4,5,6,7,8 seviyeli segmentasyon ile algoritmaların düşük ve orta seviyelerdeki başarımı değerlendirilmiştir. 100 görüntü üzerinde yapılan deney sonuçları Friedman istatistiksel analiz yöntemi ile analiz edilmiştir. Elde edilen sonuçlar en başarılı ilk iki algoritmasın güve-alev optimizasyonu ve parçacık sürüsü optimizasyonu olduğunu göstermiştir. Geniş bir veri seti üzerinde çeşitli seviyelerde eşikleme ve farklı sonlandırma kriterleri ile yapılan bu çalışmanın sonuçları, görüntü segmentasyonu alanında çalışan araştırmacılara algoritma seçimi konusunda önemli bilgiler sağlamaktadır.

References

  • J. N. Kapur, P. K Sahoo and A. K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics and image processing, 29 (3), 273-285, 1985. https://doi.org/10.1016/0734-189X(85)90125-2.
  • N. Otsu, A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66, 1979‏ https://doi.org/10.1109/ TSMC.1979.4310076.
  • M. Sezgin and B.L. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146-168, 2004. https://doi.org/10.1117/1.1631315.
  • P. Y. Yin and L. H. Chen. A fast iterative scheme for multilevel thresholding methods. Signal processing, 60(3), 305-313, 1997. https://doi.org/10.1016/S0165-1684(97)00080-7.
  • P. Y. Yin, Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Applied mathematics and computation, 184(2), 503-513, 2007. https://doi.org/10.1016/j.amc.2006.06.057.
  • M. H. Horng, A multilevel image thresholding using the honey bee mating optimization. Applied Mathematics and Computation, 215(9), 3302-3310, 2010. https://doi.org/10.1016/j.amc.2009.10.018.
  • M. H. Horng and R. J. Liou, Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Systems with Applications, 38(12), 14805-14811, 2011. https://doi.org/10.1016/j.eswa.2011.05.069.
  • B. Akay, A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Applied Soft Computing, 13(6), 3066-3091, 2013. https://doi.org/10.1016/j.asoc.2012. 03.072.
  • A. K. Bhandari, V. K. Singh, A. Kumar, and G. K. Singh, Cuckoo search algorithm and wind driven optimization-based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538-3560, 2014. https://doi.org/10.1016/j.eswa. 2013.10.059.
  • S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Applied Soft Computing, 61, 570-592, 2017. https://doi.org/10.1016/j.asoc. 2017.08.039.
  • A. K. M. Khairuzzaman, and S. Chaudhury, Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Systems with Applications, 86, 64-76, 2017. https://doi.org/10.1016/j.eswa.2017.04. 029.
  • M. Abd El Aziz, A. A. Ewees, and A. E. Hassanien, Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242-256, 2017. https://doi.org/10.1016/j.eswa.2017. 04.023.
  • B. Küçükuğurlu, and E. Gedikli, Symbiotic organisms search algorithm for multilevel thresholding of images. Expert Systems with Applications, 147, 113210, 2020. https://doi.org/10.1016/j.eswa.2020.113210.
  • P. D. Sathya, R. Kalyani, and V. P. Sakthivel, Color image segmentation using Kapur, Otsu and minimum cross entropy functions based on exchange market algorithm. Expert Systems with Applications, 172, 114636, 2021. https://doi.org/10.1016/j.eswa.2021. 114636.
  • E. H. Houssein, B. E. D. Helmy, D. Oliva, A. A. Elngar, and H. Shaban, A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Systems with Applications, 167, 114159, 2021. https://doi.org/10.1016/j.e.swa.2020. 114159.
  • A. K. Bhandari, A. Kumar, and G. K. Singh, Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert systems with applications, 42(3), 1573-1601, 2015. https://doi.org/10.1016/j.eswa. 2014.09.049.
  • L. He, and S. Huang, Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing, 240, 152-174, 2017. https://doi.org/10.1016/j.neucom.2017.02.040.
  • J. Anitha, S. I. A. Pandian, and S. A. Agnes, An efficient multilevel color image thresholding based on modified whale optimization algorithm. Expert Systems with Applications, 178, 115003, 2021. https://doi.org/10.1016/j.eswa.2021.115003.
  • T. Rahkar Farshi, and A. K. Ardabili, A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding. Multimedia Systems, 27(1), 125-142, 2021. https://doi.org/10.1007/s00530-020-00716-y.
  • M. Abd Elaziz, D. Mohammadi, D. Oliva, and K. Salimifard, Quantum marine predators algorithm for addressing multilevel image segmentation. Applied Soft Computing, 110, 107598, 2021. https://doi.org/ 10.1016/j.asoc.2021.107598.
  • L. Qiao, K. Liu, Y. Xue, W. Tang, and T. Salehnia, A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms. Expert Systems with Applications, 241, 122316, 2024. https://doi.org/ 10.1016/j.eswa.2023.122316.
  • F. S. Gharehchopogh, and T. Ibrikci, An improved African vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation. Multimedia Tools and Applications, 83(6), 16929-16975, 2024. https://doi.org/10.1007/ s11042-023-16300-1.
  • L. Abualigah, N. K. Al-Okbi, E. M. Awwad, M. Sharaf, and M. S. Daoud, Boosted Aquila Arithmetic Optimization Algorithm for multi-level thresholding image segmentation. Evolving Systems, 15, 1399-1426, 1-28, 2024. https://doi.org/10.1007/s12530-023-09566-1.
  • J. Wang, J. Bei, H. Song, H. Zhang, and P. Zhang, A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation. Applied Soft Computing, 137, 110130, 2023. https://doi.org/ 10.1016/j.asoc.2023.110130.
  • D. Karaboga, and B. Basturk, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. InInternational Fuzzy Systems Association World Congress, pp. 789-798, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72950-1_77.
  • X. S. Yang, and S. Deb, Cuckoo search via Lévy flights. In 2009 World Congress On Nature & Biologically Inspired Computing (NaBIC), pp. 210-214, 2009. https://doi.org/10.1109/NABIC. 2009.5393690.
  • R. Storn, and K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341-359, 1997. https://doi.org/10.1023/ A:1008202821328.
  • S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey wolf optimizer. Advances in engineering software, 69, 46-61, 2014. https://doi.org/10.1016/j.advengsoft. 2013.12.007.
  • A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872, 2019. https://doi.org/10.1016/j.future.2019.02.028.
  • S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249, 2015. https://doi.org/10.1016/j.knosys.2015.07.006.
  • R. Poli, J. Kennedy, and T. Blackwell, Particle swarm optimization. Swarm intelligence, 1(1), 33-57, 2007. https://doi.org/10.1007/s11721-007-0002-0.
  • S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133, 2016. https://doi.org/10.1016/ j.knosys.2015.12.022.
  • M. Y. Cheng, and D. Prayogo, Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112, 2014. https://doi.org/10.1016/j.compstruc.2014.03.007.
  • S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191, 2017. https://doi.org/10.1016/j.advengsoft. 2017.07.002.
  • S. Mirjalili, and A. Lewis, The whale optimization algorithm. Advances in engineering software, 95, 51-67, 2016. https://doi.org/10.1016/j.advengsoft. 2016.01.008.
  • H. T. Kahraman, S. Aras, and E. Gedikli, Fitness-distance balance (FDB): A new selection method for metaheuristic search algorithms. Knowledge-Based Systems, 190, 105169, 2020. https://doi.org/ 10.1016/j.knosys.2019.105169.
  • The Berkeley Segmentation Dataset and Benchmark, https://www2.eecs.berkeley.edu/Research/ Projects/CS/vision/bsds/

Comparison of multi-level image thresholding performances of meta-heuristic search algorithms

Year 2025, Volume: 14 Issue: 1, 1 - 1
https://doi.org/10.28948/ngumuh.1529614

Abstract

Thresholding based segmentation methods are successful in determining small number of threshold values. As the computational complexity is high for multilevel thresholding, meta-heuristic search algorithms are used. In this study, the performance of 11 meta-heuristic search algorithms (artificial bee colony, cuckoo search, differential evolution, gray wolf optimization, harris hawk optimization, moth-flame optimization, particle swarm optimization, sine-cosine algorithm, symbiotic organisms search, salp swarm algorithm, whale optimization algorithm) were compared for image segmentation problem. The low and medium level (m=2,3,4,5,6,7,8) segmentation performances of algorithms were evaluated. The experimental results on 100 images were analyzed with Friedman statistical analysis method. The obtained results showed that the first two most successful algorithms were moth-flame optimization and particle swarm optimization. The results of this study, conducted on a large dataset with various levels of thresholding and different termination criteria, provide important information on algorithm selection for researchers working in the field of image segmentation.

References

  • J. N. Kapur, P. K Sahoo and A. K. Wong, A new method for gray-level picture thresholding using the entropy of the histogram. Computer vision, graphics and image processing, 29 (3), 273-285, 1985. https://doi.org/10.1016/0734-189X(85)90125-2.
  • N. Otsu, A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66, 1979‏ https://doi.org/10.1109/ TSMC.1979.4310076.
  • M. Sezgin and B.L. Sankur, Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146-168, 2004. https://doi.org/10.1117/1.1631315.
  • P. Y. Yin and L. H. Chen. A fast iterative scheme for multilevel thresholding methods. Signal processing, 60(3), 305-313, 1997. https://doi.org/10.1016/S0165-1684(97)00080-7.
  • P. Y. Yin, Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Applied mathematics and computation, 184(2), 503-513, 2007. https://doi.org/10.1016/j.amc.2006.06.057.
  • M. H. Horng, A multilevel image thresholding using the honey bee mating optimization. Applied Mathematics and Computation, 215(9), 3302-3310, 2010. https://doi.org/10.1016/j.amc.2009.10.018.
  • M. H. Horng and R. J. Liou, Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Systems with Applications, 38(12), 14805-14811, 2011. https://doi.org/10.1016/j.eswa.2011.05.069.
  • B. Akay, A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Applied Soft Computing, 13(6), 3066-3091, 2013. https://doi.org/10.1016/j.asoc.2012. 03.072.
  • A. K. Bhandari, V. K. Singh, A. Kumar, and G. K. Singh, Cuckoo search algorithm and wind driven optimization-based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538-3560, 2014. https://doi.org/10.1016/j.eswa. 2013.10.059.
  • S. Pare, A. Kumar, V. Bajaj, and G. K. Singh, An efficient method for multilevel color image thresholding using cuckoo search algorithm based on minimum cross entropy. Applied Soft Computing, 61, 570-592, 2017. https://doi.org/10.1016/j.asoc. 2017.08.039.
  • A. K. M. Khairuzzaman, and S. Chaudhury, Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Systems with Applications, 86, 64-76, 2017. https://doi.org/10.1016/j.eswa.2017.04. 029.
  • M. Abd El Aziz, A. A. Ewees, and A. E. Hassanien, Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Systems with Applications, 83, 242-256, 2017. https://doi.org/10.1016/j.eswa.2017. 04.023.
  • B. Küçükuğurlu, and E. Gedikli, Symbiotic organisms search algorithm for multilevel thresholding of images. Expert Systems with Applications, 147, 113210, 2020. https://doi.org/10.1016/j.eswa.2020.113210.
  • P. D. Sathya, R. Kalyani, and V. P. Sakthivel, Color image segmentation using Kapur, Otsu and minimum cross entropy functions based on exchange market algorithm. Expert Systems with Applications, 172, 114636, 2021. https://doi.org/10.1016/j.eswa.2021. 114636.
  • E. H. Houssein, B. E. D. Helmy, D. Oliva, A. A. Elngar, and H. Shaban, A novel black widow optimization algorithm for multilevel thresholding image segmentation. Expert Systems with Applications, 167, 114159, 2021. https://doi.org/10.1016/j.e.swa.2020. 114159.
  • A. K. Bhandari, A. Kumar, and G. K. Singh, Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert systems with applications, 42(3), 1573-1601, 2015. https://doi.org/10.1016/j.eswa. 2014.09.049.
  • L. He, and S. Huang, Modified firefly algorithm based multilevel thresholding for color image segmentation. Neurocomputing, 240, 152-174, 2017. https://doi.org/10.1016/j.neucom.2017.02.040.
  • J. Anitha, S. I. A. Pandian, and S. A. Agnes, An efficient multilevel color image thresholding based on modified whale optimization algorithm. Expert Systems with Applications, 178, 115003, 2021. https://doi.org/10.1016/j.eswa.2021.115003.
  • T. Rahkar Farshi, and A. K. Ardabili, A hybrid firefly and particle swarm optimization algorithm applied to multilevel image thresholding. Multimedia Systems, 27(1), 125-142, 2021. https://doi.org/10.1007/s00530-020-00716-y.
  • M. Abd Elaziz, D. Mohammadi, D. Oliva, and K. Salimifard, Quantum marine predators algorithm for addressing multilevel image segmentation. Applied Soft Computing, 110, 107598, 2021. https://doi.org/ 10.1016/j.asoc.2021.107598.
  • L. Qiao, K. Liu, Y. Xue, W. Tang, and T. Salehnia, A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms. Expert Systems with Applications, 241, 122316, 2024. https://doi.org/ 10.1016/j.eswa.2023.122316.
  • F. S. Gharehchopogh, and T. Ibrikci, An improved African vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation. Multimedia Tools and Applications, 83(6), 16929-16975, 2024. https://doi.org/10.1007/ s11042-023-16300-1.
  • L. Abualigah, N. K. Al-Okbi, E. M. Awwad, M. Sharaf, and M. S. Daoud, Boosted Aquila Arithmetic Optimization Algorithm for multi-level thresholding image segmentation. Evolving Systems, 15, 1399-1426, 1-28, 2024. https://doi.org/10.1007/s12530-023-09566-1.
  • J. Wang, J. Bei, H. Song, H. Zhang, and P. Zhang, A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation. Applied Soft Computing, 137, 110130, 2023. https://doi.org/ 10.1016/j.asoc.2023.110130.
  • D. Karaboga, and B. Basturk, Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. InInternational Fuzzy Systems Association World Congress, pp. 789-798, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-72950-1_77.
  • X. S. Yang, and S. Deb, Cuckoo search via Lévy flights. In 2009 World Congress On Nature & Biologically Inspired Computing (NaBIC), pp. 210-214, 2009. https://doi.org/10.1109/NABIC. 2009.5393690.
  • R. Storn, and K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341-359, 1997. https://doi.org/10.1023/ A:1008202821328.
  • S. Mirjalili, S. M. Mirjalili, and A. Lewis, Grey wolf optimizer. Advances in engineering software, 69, 46-61, 2014. https://doi.org/10.1016/j.advengsoft. 2013.12.007.
  • A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872, 2019. https://doi.org/10.1016/j.future.2019.02.028.
  • S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249, 2015. https://doi.org/10.1016/j.knosys.2015.07.006.
  • R. Poli, J. Kennedy, and T. Blackwell, Particle swarm optimization. Swarm intelligence, 1(1), 33-57, 2007. https://doi.org/10.1007/s11721-007-0002-0.
  • S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133, 2016. https://doi.org/10.1016/ j.knosys.2015.12.022.
  • M. Y. Cheng, and D. Prayogo, Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112, 2014. https://doi.org/10.1016/j.compstruc.2014.03.007.
  • S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191, 2017. https://doi.org/10.1016/j.advengsoft. 2017.07.002.
  • S. Mirjalili, and A. Lewis, The whale optimization algorithm. Advances in engineering software, 95, 51-67, 2016. https://doi.org/10.1016/j.advengsoft. 2016.01.008.
  • H. T. Kahraman, S. Aras, and E. Gedikli, Fitness-distance balance (FDB): A new selection method for metaheuristic search algorithms. Knowledge-Based Systems, 190, 105169, 2020. https://doi.org/ 10.1016/j.knosys.2019.105169.
  • The Berkeley Segmentation Dataset and Benchmark, https://www2.eecs.berkeley.edu/Research/ Projects/CS/vision/bsds/
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Image Processing
Journal Section Articles
Authors

Asuman Günay Yılmaz 0000-0003-3960-5085

Samoua Alsamoua 0009-0004-6932-6401

Early Pub Date December 10, 2024
Publication Date
Submission Date August 7, 2024
Acceptance Date November 7, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Günay Yılmaz, A., & Alsamoua, S. (2024). Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 1-1. https://doi.org/10.28948/ngumuh.1529614
AMA Günay Yılmaz A, Alsamoua S. Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması. NOHU J. Eng. Sci. December 2024;14(1):1-1. doi:10.28948/ngumuh.1529614
Chicago Günay Yılmaz, Asuman, and Samoua Alsamoua. “Meta Sezgisel Arama algoritmalarının çok Seviyeli görüntü eşikleme performanslarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (December 2024): 1-1. https://doi.org/10.28948/ngumuh.1529614.
EndNote Günay Yılmaz A, Alsamoua S (December 1, 2024) Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 1–1.
IEEE A. Günay Yılmaz and S. Alsamoua, “Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 1–1, 2024, doi: 10.28948/ngumuh.1529614.
ISNAD Günay Yılmaz, Asuman - Alsamoua, Samoua. “Meta Sezgisel Arama algoritmalarının çok Seviyeli görüntü eşikleme performanslarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (December 2024), 1-1. https://doi.org/10.28948/ngumuh.1529614.
JAMA Günay Yılmaz A, Alsamoua S. Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması. NOHU J. Eng. Sci. 2024;14:1–1.
MLA Günay Yılmaz, Asuman and Samoua Alsamoua. “Meta Sezgisel Arama algoritmalarının çok Seviyeli görüntü eşikleme performanslarının karşılaştırılması”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2024, pp. 1-1, doi:10.28948/ngumuh.1529614.
Vancouver Günay Yılmaz A, Alsamoua S. Meta sezgisel arama algoritmalarının çok seviyeli görüntü eşikleme performanslarının karşılaştırılması. NOHU J. Eng. Sci. 2024;14(1):1-.

download