Research Article
BibTex RIS Cite

Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi

Year 2025, Volume: 14 Issue: 1, 70 - 79, 15.01.2025
https://doi.org/10.28948/ngumuh.1493656

Abstract

Dünya genelinde ölüm oranları açısından ilk sıralarda yer alan melanomanın tespitinde kullanılan yöntemlerin dezavantajlarından dolayı yeni yöntemlerin geliştirilmesine ihtiyaç duyulmaktadır. Bu doğrultuda yüzeyde zenginleştirilmiş Raman spektroskopisi (YZRS) güçlü ve alternatif bir teknik olarak karşımıza çıkmaktadır. Bu çalışmada deri fibroblast, tümör ilişkili fibroblast ve melanoma hücrelerinin kültür aşamasında hücre kültür ortamına eklenen serumun hücrelerden toplanan YZRS spektrumlarının sınıflandırma başarısı üzerine etkisi araştırılmıştır. Serum eklenen ve eklenmeyen ortamda kültürlenen hücrelerden elde edilen YZRS spektrumlarının; temel bileşen analizi (TBA), yeniden yapılanma bağımsız bileşen analizi (YYBBA) ve seyrek filtreleme (SF) yöntemleri kullanılarak öz nitelik çıkarımı gerçekleştirilmiştir. Çıkarılan öz nitelikleri sınıflandırmak için destek vektör makinası (DVM) ve k en yakın komşu (KEYK) algoritması kullanılmıştır. Serum eklenmeyen hücre kültür ortamlarında kültürlenen hücrelerden toplanan spektrumların makine öğrenme teknikleri ile sınıflandırma işlemi gerçekleştirildiğinde sınıflandırma başarılarının serum eklenen gruba göre daha yüksek olduğu tespit edilmiştir. Serum eklenmeyen hücre grubunun sınıflandırma başarısı SF ile DVM kullanıldığında %96.4±0.4, TBA ile KEYK algoritması kullanıldığında %96.8±0.29 olarak bulunmuş olup serum eklenen ve eklenmeyen gruplara ait sınıflandırma başarısı arasında istatistiksel açıdan anlamlı bir fark bulunmuştur.

References

  • X. Ma, H. Yu, Global Burden of Cancer, Yale J Biol Med 79, 85–94, 2006.
  • H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA: A Cancer Journal for Clinicians 71, 209–249, 2021.
  • C.C. Compton, D.R. Byrd, J. Garcia-Aguilar, S.H. Kurtzman, A. Olawaiye, M.K. AJCC Cancer Staging Manual and Handbook, Springer, New York, NY, 2012.
  • Melanoma of the Skin- Cancer Stat Facts, https://seer.cancer.gov/statfacts/html/melan.html (Son Erişim 18 Ağustos 2024).
  • G.C. Karakousis, B.J. Czerniecki, Diagnosis of Melanoma, PET Clinics 6, 1–8, 2011.
  • Z. Al-Shaebi, F. Uysal Ciloglu, M. Nasser, M. Kahraman, O. Aydin, Staphylococcus Aureus-Related antibiotic resistance detection using synergy of Surface-Enhanced Raman spectroscopy and deep learning, Biomedical Signal Processing and Control 91, 105933, 2024.
  • M. Akdeniz, F.U. Ciloglu, C.U. Tunc, U. Yilmaz, D. Kanarya, P. Atalay, O. Aydin, Investigation of mammalian cells expressing SARS-CoV-2 proteins by surface-enhanced Raman scattering and multivariate analysis, Analyst 147, 1213–1221, 2022.
  • X. Li, G. Yang, S. Zhang, H. Ren, Advancing clinical cancer care: Unveiling the power of surface-enhanced Raman spectroscopy, Journal of Raman Spectroscopy 55, 429–444, 2024.
  • W. Li, C. Yang, H. Zhao, M. Sun, Z. Bao, Surface enhanced Raman spectroscopy on diagnosis of malignant tumors, Applied Spectroscopy Reviews 59, 678-709,2023.
  • D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman spectroscopy (SERS): progress and trends, Anal Bioanal Chem 403, 27–54, 2012. https://doi.org/10.1007/s00216-011-5631-x.
  • X. Zhu, T. Xu, Q. Lin, Y. Duan, Technical Development of Raman Spectroscopy: From Instrumental to Advanced Combined Technologies, Applied Spectroscopy Reviews 49, 64–82, 2014. https://doi.org/10.1080/05704928.2013.798801.
  • Y. Qi, D. Hu, Y. Jiang, Z. Wu, M. Zheng, E.X. Chen, Y. Liang, M.A. Sadi, K. Zhang, Y.P. Chen, Recent Progresses in Machine Learning Assisted Raman Spectroscopy, Advanced Optical Materials 11, 2203104,2023. https://doi.org/10.1002/adom.202203104.
  • H. Shin, S. Oh, S. Hong, M. Kang, D. Kang, Y. Ji, B.H. Choi, K.-W. Kang, H. Jeong, Y. Park, S. Hong, H.K. Kim, Y. Choi, Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes, ACS Nano 14, 5435–5444,2020. https://doi.org/10.1021/acsnano.9b09119.
  • X. Qiu, X. Wu, X. Fang, Q. Fu, P. Wang, X. Wang, S. Li, Y. Li, Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 286, 122029, 2023. https://doi.org/10.1016/j.saa.2022.122029.
  • J. Wang, Y.-C. Kao, Q. Zhou, A. Wuethrich, M.S. Stark, H. Schaider, H.P. Soyer, L.L. Lin, M. Trau, An Integrated Microfluidic-SERS Platform Enables Sensitive Phenotyping of Serum Extracellular Vesicles in Early Stage Melanomas, Advanced Functional Materials 32, 2010296, 2022. https://doi.org/10.1002/adfm.202010296.
  • M. Yousuff, R. Babu, Deep autoencoder based hybrid dimensionality reduction approach for classification of SERS for melanoma cancer diagnostics, Journal of Intelligent & Fuzzy Systems 43, 7647–7661, 2022. https://doi.org/10.3233/JIFS-212777.
  • M. Erzina, A. Trelin, O. Guselnikova, B. Dvorankova, K. Strnadova, A. Perminova, P. Ulbrich, D. Mares, V. Jerabek, R. Elashnikov, V. Svorcik, O. Lyutakov, Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs, Sensors and Actuators B: Chemical 308, 127660, 2020. https://doi.org/10.1016/j.snb.2020.127660.
  • H.E.E. Duruel, N.S. Çağan, S. Işık, F.E. Kayhan, Hücre Kültürlerine Genel Bakış, Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 47, 136–149, 2021. https://doi.org/10.35238sufefd.935531
  • S. Weiskirchen, S.K. Schröder, E.M. Buhl, R. Weiskirchen, A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems, Cells 12, 682, 2023. https://doi.org/10.3390/cells12050682.
  • T. Yao, Y. Asayama, Animal‐cell culture media: History, characteristics, and current issues, Reprod Med Biol 16, 99–117, 2017. https://doi.org/10.1002/rmb2.12024.
  • A. Verma, M. Verma, A. Singh, Animal tissue culture principles and applications, Animal Biotechnology 269–293, 2020. https://doi.org/10.1016/B978-0-12-811710-1.00012-4.
  • F.U. Ciloglu, M. Hora, A. Gundogdu, M. Kahraman, M. Tokmakci, O. Aydin, SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae, Analytica Chimica Acta 1221 340094,2022. https://doi.org/10.1016/j.aca.2022.340094.
  • A.H. Arslan, F.U. Ciloglu, U. Yilmaz, E. Simsek, O. Aydin, Discrimination of waterborne pathogens, Cryptosporidium parvum oocysts and bacteria using surface-enhanced Raman spectroscopy coupled with principal component analysis and hierarchical clustering, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 267, 120475, 2022. https://doi.org/10.1016/j.saa.2021.120475.
  • I. T. Jollife, Principal Component Analysis, 2nd Edition, Springer, 2002.
  • A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications, Neural Networks 13, 411–430, 2000. https://doi.org/10.1016/S0893-6080(00)00026-5.
  • Q. Le, A. Karpenko, J. Ngiam, A. Ng, ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning, in: Advances in Neural Information Processing Systems, Curran Associates, Inc., 2011. https://proceedings.neurips.cc/paper/2011/hash/233509073ed3432027d48b1a83f5fbd2-Abstract.html (Son erişim 30 Nisan, 2024)
  • J. Ngiam, Z. Chen, S. Bhaskar, P. Koh, A. Ng, Sparse Filtering, in: Advances in Neural Information Processing Systems, Curran Associates, Inc., 2011. https://papers.nips.cc/paper_files/paper/2011/hash/192fc044e74dffea144f9ac5dc9f3395-Abstract.html (Son erişim 3 Mayıs, 2024).
  • Z. Zhang, Q. Yang, W. Zhou, A Feature Extraction Method Based on Sparse Filtering With Local Structure Preserved and Its Applications to Bearing Fault Diagnosis, IEEE Access 7, 160559–160572, 2019. https://doi.org/10.1109/ACCESS.2019.2951409.
  • P.E. McKnight, J. Najab, Mann-Whitney U Test, in: The Corsini Encyclopedia of Psychology, John Wiley & Sons, Ltd, 2010. https://doi.org/10.1002/9780470479216.corpsy0524.
  • A.C.S. Talari, Z. Movasaghi, S. Rehman, I. ur Rehman, Raman Spectroscopy of Biological Tissues, Applied Spectroscopy Reviews 50, 46–111, 2015. https://doi.org/10.1080/05704928.2014.923902.
  • U. Utzinger, D.L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, Near-Infrared Raman Spectroscopy for in vivo Detection of Cervical Precancers, Appl Spectrosc 55, 955–959, 2001. https://doi.org/10.1366/0003702011953018.
  • J.P. Mather, P.E. Roberts, eds., Serum-Free Culture, in: Introduction to Cell and Tissue Culture: Theory and Technique, Springer, 1998.
  • R.G. Werner, W. Noé, Mammalian cell cultures. Part I: Characterization, morphology and metabolism, Arzneimittelforschung 43, 1134–1139, 1993.
  • F.U. Ciloglu, A.M. Saridag, I.H. Kilic, M. Tokmakci, M. Kahraman, O. Aydin, Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques, Analyst 145, 7559–7570, 2020. https://doi.org/10.1039/D0AN00476F.
  • Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer New York, 2006.
  • M. Gargotti, E. Efeoglu, H.J. Byrne, A. Casey, Raman spectroscopy detects biochemical changes due to different cell culture environments in live cells in vitro, Anal Bioanal Chem 410, 7537–7550, 2018. https://doi.org/10.1007/s00216-018-1371-5.
  • C. Hanson, M.M. Bishop, J.T. Barney, E. Vargis, Effect of growth media and phase on Raman spectra and discrimination of mycobacteria, Journal of Biophotonics 12, e201900150, 2019. https://doi.org/10.1002/jbio.201900150.
  • K. Mlynáriková, O. Samek, S. Bernatová, F. Růžička, J. Ježek, A. Hároniková, M. Šiler, P. Zemánek, V. Holá, Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy, Sensors 15, 29635–29647, 2015. https://doi.org/10.3390/s151129635

Investigation of the effect of serum added to the medium on the classification success in the detection of melanoma using surface-enhanced Raman spectroscopy

Year 2025, Volume: 14 Issue: 1, 70 - 79, 15.01.2025
https://doi.org/10.28948/ngumuh.1493656

Abstract

Due to the disadvantages of the methods used for the detection of melanoma, which ranks among the leading causes of death worldwide, there is a need for the development of new methods. In this context, surface-enhanced Raman spectroscopy (SERS) emerges as a powerful and alternative technique. In this study, the effect of serum added to the cell culture medium during the culture of skin fibroblasts, tumor-associated fibroblasts, and melanoma cells on the classification success of SERS spectra collected from the cells was investigated. Feature extraction was performed using principal component analysis (PCA), reconstruction-independent component analysis (RICA), and sparse filtering (SF) methods on SERS spectra obtained from cells cultured in media with and without serum. Support vector machines (SVM) and k-nearest neighbors (KNN) algorithms were used to classify the extracted features. It was found that the classification accuracy of spectra collected from cells cultured in serum-free media was higher compared to those from the serum-added group when classified using machine learning techniques. The classification accuracy of the serum-free cell group was found to be 96.4±0.4% using SF with SVM and 96.8±0.29% using PCA with the KNN algorithm, with a statistically significant difference in classification accuracy between the serum-added and serum-free groups.

References

  • X. Ma, H. Yu, Global Burden of Cancer, Yale J Biol Med 79, 85–94, 2006.
  • H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA: A Cancer Journal for Clinicians 71, 209–249, 2021.
  • C.C. Compton, D.R. Byrd, J. Garcia-Aguilar, S.H. Kurtzman, A. Olawaiye, M.K. AJCC Cancer Staging Manual and Handbook, Springer, New York, NY, 2012.
  • Melanoma of the Skin- Cancer Stat Facts, https://seer.cancer.gov/statfacts/html/melan.html (Son Erişim 18 Ağustos 2024).
  • G.C. Karakousis, B.J. Czerniecki, Diagnosis of Melanoma, PET Clinics 6, 1–8, 2011.
  • Z. Al-Shaebi, F. Uysal Ciloglu, M. Nasser, M. Kahraman, O. Aydin, Staphylococcus Aureus-Related antibiotic resistance detection using synergy of Surface-Enhanced Raman spectroscopy and deep learning, Biomedical Signal Processing and Control 91, 105933, 2024.
  • M. Akdeniz, F.U. Ciloglu, C.U. Tunc, U. Yilmaz, D. Kanarya, P. Atalay, O. Aydin, Investigation of mammalian cells expressing SARS-CoV-2 proteins by surface-enhanced Raman scattering and multivariate analysis, Analyst 147, 1213–1221, 2022.
  • X. Li, G. Yang, S. Zhang, H. Ren, Advancing clinical cancer care: Unveiling the power of surface-enhanced Raman spectroscopy, Journal of Raman Spectroscopy 55, 429–444, 2024.
  • W. Li, C. Yang, H. Zhao, M. Sun, Z. Bao, Surface enhanced Raman spectroscopy on diagnosis of malignant tumors, Applied Spectroscopy Reviews 59, 678-709,2023.
  • D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman spectroscopy (SERS): progress and trends, Anal Bioanal Chem 403, 27–54, 2012. https://doi.org/10.1007/s00216-011-5631-x.
  • X. Zhu, T. Xu, Q. Lin, Y. Duan, Technical Development of Raman Spectroscopy: From Instrumental to Advanced Combined Technologies, Applied Spectroscopy Reviews 49, 64–82, 2014. https://doi.org/10.1080/05704928.2013.798801.
  • Y. Qi, D. Hu, Y. Jiang, Z. Wu, M. Zheng, E.X. Chen, Y. Liang, M.A. Sadi, K. Zhang, Y.P. Chen, Recent Progresses in Machine Learning Assisted Raman Spectroscopy, Advanced Optical Materials 11, 2203104,2023. https://doi.org/10.1002/adom.202203104.
  • H. Shin, S. Oh, S. Hong, M. Kang, D. Kang, Y. Ji, B.H. Choi, K.-W. Kang, H. Jeong, Y. Park, S. Hong, H.K. Kim, Y. Choi, Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes, ACS Nano 14, 5435–5444,2020. https://doi.org/10.1021/acsnano.9b09119.
  • X. Qiu, X. Wu, X. Fang, Q. Fu, P. Wang, X. Wang, S. Li, Y. Li, Raman spectroscopy combined with deep learning for rapid detection of melanoma at the single cell level, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 286, 122029, 2023. https://doi.org/10.1016/j.saa.2022.122029.
  • J. Wang, Y.-C. Kao, Q. Zhou, A. Wuethrich, M.S. Stark, H. Schaider, H.P. Soyer, L.L. Lin, M. Trau, An Integrated Microfluidic-SERS Platform Enables Sensitive Phenotyping of Serum Extracellular Vesicles in Early Stage Melanomas, Advanced Functional Materials 32, 2010296, 2022. https://doi.org/10.1002/adfm.202010296.
  • M. Yousuff, R. Babu, Deep autoencoder based hybrid dimensionality reduction approach for classification of SERS for melanoma cancer diagnostics, Journal of Intelligent & Fuzzy Systems 43, 7647–7661, 2022. https://doi.org/10.3233/JIFS-212777.
  • M. Erzina, A. Trelin, O. Guselnikova, B. Dvorankova, K. Strnadova, A. Perminova, P. Ulbrich, D. Mares, V. Jerabek, R. Elashnikov, V. Svorcik, O. Lyutakov, Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs, Sensors and Actuators B: Chemical 308, 127660, 2020. https://doi.org/10.1016/j.snb.2020.127660.
  • H.E.E. Duruel, N.S. Çağan, S. Işık, F.E. Kayhan, Hücre Kültürlerine Genel Bakış, Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 47, 136–149, 2021. https://doi.org/10.35238sufefd.935531
  • S. Weiskirchen, S.K. Schröder, E.M. Buhl, R. Weiskirchen, A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems, Cells 12, 682, 2023. https://doi.org/10.3390/cells12050682.
  • T. Yao, Y. Asayama, Animal‐cell culture media: History, characteristics, and current issues, Reprod Med Biol 16, 99–117, 2017. https://doi.org/10.1002/rmb2.12024.
  • A. Verma, M. Verma, A. Singh, Animal tissue culture principles and applications, Animal Biotechnology 269–293, 2020. https://doi.org/10.1016/B978-0-12-811710-1.00012-4.
  • F.U. Ciloglu, M. Hora, A. Gundogdu, M. Kahraman, M. Tokmakci, O. Aydin, SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae, Analytica Chimica Acta 1221 340094,2022. https://doi.org/10.1016/j.aca.2022.340094.
  • A.H. Arslan, F.U. Ciloglu, U. Yilmaz, E. Simsek, O. Aydin, Discrimination of waterborne pathogens, Cryptosporidium parvum oocysts and bacteria using surface-enhanced Raman spectroscopy coupled with principal component analysis and hierarchical clustering, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 267, 120475, 2022. https://doi.org/10.1016/j.saa.2021.120475.
  • I. T. Jollife, Principal Component Analysis, 2nd Edition, Springer, 2002.
  • A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications, Neural Networks 13, 411–430, 2000. https://doi.org/10.1016/S0893-6080(00)00026-5.
  • Q. Le, A. Karpenko, J. Ngiam, A. Ng, ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning, in: Advances in Neural Information Processing Systems, Curran Associates, Inc., 2011. https://proceedings.neurips.cc/paper/2011/hash/233509073ed3432027d48b1a83f5fbd2-Abstract.html (Son erişim 30 Nisan, 2024)
  • J. Ngiam, Z. Chen, S. Bhaskar, P. Koh, A. Ng, Sparse Filtering, in: Advances in Neural Information Processing Systems, Curran Associates, Inc., 2011. https://papers.nips.cc/paper_files/paper/2011/hash/192fc044e74dffea144f9ac5dc9f3395-Abstract.html (Son erişim 3 Mayıs, 2024).
  • Z. Zhang, Q. Yang, W. Zhou, A Feature Extraction Method Based on Sparse Filtering With Local Structure Preserved and Its Applications to Bearing Fault Diagnosis, IEEE Access 7, 160559–160572, 2019. https://doi.org/10.1109/ACCESS.2019.2951409.
  • P.E. McKnight, J. Najab, Mann-Whitney U Test, in: The Corsini Encyclopedia of Psychology, John Wiley & Sons, Ltd, 2010. https://doi.org/10.1002/9780470479216.corpsy0524.
  • A.C.S. Talari, Z. Movasaghi, S. Rehman, I. ur Rehman, Raman Spectroscopy of Biological Tissues, Applied Spectroscopy Reviews 50, 46–111, 2015. https://doi.org/10.1080/05704928.2014.923902.
  • U. Utzinger, D.L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, R. Richards-Kortum, Near-Infrared Raman Spectroscopy for in vivo Detection of Cervical Precancers, Appl Spectrosc 55, 955–959, 2001. https://doi.org/10.1366/0003702011953018.
  • J.P. Mather, P.E. Roberts, eds., Serum-Free Culture, in: Introduction to Cell and Tissue Culture: Theory and Technique, Springer, 1998.
  • R.G. Werner, W. Noé, Mammalian cell cultures. Part I: Characterization, morphology and metabolism, Arzneimittelforschung 43, 1134–1139, 1993.
  • F.U. Ciloglu, A.M. Saridag, I.H. Kilic, M. Tokmakci, M. Kahraman, O. Aydin, Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques, Analyst 145, 7559–7570, 2020. https://doi.org/10.1039/D0AN00476F.
  • Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer New York, 2006.
  • M. Gargotti, E. Efeoglu, H.J. Byrne, A. Casey, Raman spectroscopy detects biochemical changes due to different cell culture environments in live cells in vitro, Anal Bioanal Chem 410, 7537–7550, 2018. https://doi.org/10.1007/s00216-018-1371-5.
  • C. Hanson, M.M. Bishop, J.T. Barney, E. Vargis, Effect of growth media and phase on Raman spectra and discrimination of mycobacteria, Journal of Biophotonics 12, e201900150, 2019. https://doi.org/10.1002/jbio.201900150.
  • K. Mlynáriková, O. Samek, S. Bernatová, F. Růžička, J. Ježek, A. Hároniková, M. Šiler, P. Zemánek, V. Holá, Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy, Sensors 15, 29635–29647, 2015. https://doi.org/10.3390/s151129635
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Machine Learning (Other), Biomedical Sciences and Technology, Biomedical Engineering (Other), Nanophotonics
Journal Section Research Articles
Authors

Fatma Uysal Çiloğlu 0000-0001-8827-3668

Early Pub Date December 10, 2024
Publication Date January 15, 2025
Submission Date June 1, 2024
Acceptance Date October 15, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Uysal Çiloğlu, F. (2025). Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 70-79. https://doi.org/10.28948/ngumuh.1493656
AMA Uysal Çiloğlu F. Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi. NOHU J. Eng. Sci. January 2025;14(1):70-79. doi:10.28948/ngumuh.1493656
Chicago Uysal Çiloğlu, Fatma. “Melanomanın yüzeyde zenginleştirilmiş Raman Spektroskopisi Ile Tespitinde Ortama Eklenen Serumun sınıflandırma başarısı üzerine Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (January 2025): 70-79. https://doi.org/10.28948/ngumuh.1493656.
EndNote Uysal Çiloğlu F (January 1, 2025) Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 70–79.
IEEE F. Uysal Çiloğlu, “Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 70–79, 2025, doi: 10.28948/ngumuh.1493656.
ISNAD Uysal Çiloğlu, Fatma. “Melanomanın yüzeyde zenginleştirilmiş Raman Spektroskopisi Ile Tespitinde Ortama Eklenen Serumun sınıflandırma başarısı üzerine Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (January 2025), 70-79. https://doi.org/10.28948/ngumuh.1493656.
JAMA Uysal Çiloğlu F. Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi. NOHU J. Eng. Sci. 2025;14:70–79.
MLA Uysal Çiloğlu, Fatma. “Melanomanın yüzeyde zenginleştirilmiş Raman Spektroskopisi Ile Tespitinde Ortama Eklenen Serumun sınıflandırma başarısı üzerine Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2025, pp. 70-79, doi:10.28948/ngumuh.1493656.
Vancouver Uysal Çiloğlu F. Melanomanın yüzeyde zenginleştirilmiş Raman spektroskopisi ile tespitinde ortama eklenen serumun sınıflandırma başarısı üzerine etkisinin incelenmesi. NOHU J. Eng. Sci. 2025;14(1):70-9.

download