Research Article
BibTex RIS Cite

Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi

Year 2025, Volume: 14 Issue: 1, 107 - 121, 15.01.2025
https://doi.org/10.28948/ngumuh.1551742

Abstract

Bu çalışmanın amacı yay-şekilli silindirik sandviç kompozit yapıların farklı geometrili vurucu ve farklı darbe açıları için darbe performanslarını sonlu elemanlar yöntemi ile incelemektir. Çalışmada vurucu şeklinin, vurucu açısının, yüzey kalınlığının ve darbe noktasının maksimum temas kuvveti, absorbe enerji verimliliği, maksimum yer değiştirme ve hasar deformasyonu üzerine etkileri incelenmiştir. Düşük hızlı darbe simülasyonları için LS DYNA sonlu elemanlar programında gerçekleştirmiştir. Çalışma sonunda çekirdek yapısının desteklediği P2 noktasındaki temas kuvvet değerleri P1 (çekirdek desteksiz) noktasından yüksektir. Çekirdek desteği temas kuvveti üzerinde önemli bir etkiye sahiptir. Vurucu açısı artıkça (θ=30˚’den 90˚’ye) temas kuvvet değeri 2.6 kat, enerji absorbe verimlilik değeri de 1.65 kat artmıştır. Koni vurucu ile elde edilen maksimum temas değeri silindir ve küre uçlu vurucuya göre sırayla %35.1 ve %73.7 daha yüksek iken enerji absorbe verimlilik değeri ise sırayla ile %37.1 ve %36.2 daha yüksektir. Her üç vurucu için en büyük ve baskın hasar tipinin matris hasarı olduğu belirlenmiştir.

References

  • V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches. Int J Impact Eng, vol. 77, pp. 97–107, 2015, doi: 10.1016/j.ijimpeng.2014.11.012.
  • M. O. Kaman, M. Y. Solmaz, and K. Turan, Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels. J Compos Mater, vol. 44, no. 24, pp. 2819–2831, 2010, doi: 10.1177/0021998310371541.
  • A. I. Ayten, Y. Polat, M. Sahbaz, and A. Seyhan, Effect of solution-blown nanofibrous web on quasi-static punch shear test results and quasi-static indentation behavior of carbon fiber-reinforced epoxy matrix composites. J Compos Mater, vol. 57, no. 24, pp. 3865–3875, Aug. 2023, doi: 10.1177/00219983231197351.
  • A. İ. Ayten, Investigation of mechanical properties and damage types of E-glass fiber reinforced epoxy matrix composites under various loadings. International Advanced Researches and Engineering Journal, vol. 7, no. 3, pp. 185–190, 2023, doi: 10.35860/iarej.1334883.
  • Z. Wu, L. Zhang, Z. Ying, J. Ke, and X. Hu, Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Compos B Eng, vol. 196, Sep. 2020, doi: 10.1016/j.compositesb.2020.108098.
  • J. Xiong, R. Ghosh, L. Ma, A. Vaziri, Y. Wang, and L. Wu, Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets. Compos Part A Appl Sci Manuf, vol. 56, pp. 226–238, Jan. 2014, doi: 10.1016/J.COMPOSITESA.2013.10.008.
  • M. Albayrak, M. O. Kaman, and I. Bozkurt, Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer. Applied Composite Materials, vol. 30, no. 2, pp. 507–538, 2023, doi: 10.1007/s10443-022-10094-5.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types. Materialpruefung/Materials Testing, vol. 65, no. 9, pp. 1349–1372, 2023, doi: 10.1515/mt-2023-0024.
  • İ. Bozkurt, M. Kaman, and M. Albayrak, LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022., pp. 3–7, 2022.
  • B. Kazemianfar, M. Esmaeeli, and M. R. Nami, Response of 3D woven composites under low velocity impact with different impactor geometries. Aerosp Sci Technol, vol. 102, Jul. 2020, doi: 10.1016/j.ast.2020.105849.
  • M. Y. Solmaz and T. Topkaya, The flexural fatigue behavior of honeycomb sandwich composites following low velocity impacts. Applied Sciences (Switzerland), vol. 10, no. 20, pp. 1–14, 2020, doi: 10.3390/app10207262.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 5, p. 318, May 2024, doi: 10.1007/s40430-024-04865-3.
  • W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact. Int J Mech Sci, vol. 161–162, no. July, p. 105026, 2019, doi: 10.1016/j.ijmecsci.2019.105026.
  • W. He, J. Liu, B. Tao, D. Xie, J. Liu, and M. Zhang, Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures. Compos Struct, vol. 158, pp. 30–43, 2016, doi: 10.1016/j.compstruct.2016.09.009.
  • Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings. Compos B Eng, vol. 142, no. December 2016, pp. 159–170, 2018, doi: 10.1016/j.compositesb.2018.01.020.
  • X. Zhang, F. Xu, Y. Zang, and W. Feng, Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact. Compos Struct, vol. 236, no. January, p. 111882, 2020, doi: 10.1016/j.compstruct.2020.111882.
  • W. He, J. Liu, S. Wang, and D. Xie, Low-velocity impact behavior of X-Frame core sandwich structures – Experimental and numerical investigation. Thin-Walled Structures, vol. 131, no. July, pp. 718–735, 2018, doi: 10.1016/j.tws.2018.07.042.
  • T. K. Demircioğlu, F. Balıkoğlu, O. İnal, N. Arslan, Ay, and A. Ataş, Experimental investigation on low-velocity impact response of wood skinned sandwich composites with different core configurations. Mater Today Commun, vol. 17, no. May, pp. 31–39, 2018, doi: 10.1016/j.mtcomm.2018.08.003.
  • J. Wang, A. M. Waas, and H. Wang, Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct, vol. 96, pp. 298–311, 2013, doi: 10.1016/j.compstruct.2012.09.002.
  • Y. Rong, J. Liu, W. Luo, and W. He, Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels. Compos B Eng, vol. 152, no. August, pp. 324–335, 2018, doi: 10.1016/j.compositesb.2018.08.130.
  • J. Liu, W. He, D. Xie, and B. Tao, The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures. Compos B Eng, vol. 111, pp. 315–331, 2017, doi: 10.1016/j.compositesb.2016.11.060.
  • A. Khalkhali, N. Geran Malek, and M. Bozorgi Nejad, Effects of the impactor geometrical shape on the non-linear low-velocity impact response of sandwich plate with CNTRC face sheets. Journal of Sandwich Structures and Materials, vol. 22, no. 4, pp. 962–990, May 2020, doi: 10.1177/1099636218778998.
  • W. He, J. Liu, S. Wang, and D. Xie, Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos Struct, vol. 189, pp. 37–53, Apr. 2018, doi: 10.1016/J.COMPSTRUCT.2018.01.024.
  • Z. Li et al., Impact response of a novel sandwich structure with Kirigami modified corrugated core. Int J Impact Eng, vol. 156, p. 103953, Oct. 2021, doi: 10.1016/J.Ijimpeng.2021.103953.
  • J. S. Yang et al., Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells. Compos Struct, vol. 238, no. August 2019, pp. 1–16, 2020, doi: 10.1016/j.compstruct.2020.112027.
  • Y. Cheng, K. Liu, Y. Li, Z. Wang, and J. Wang, Experimental and numerical simulation of dynamic response of U-type corrugated sandwich panels under low-velocity impact. Ocean Engineering, vol. 245, p. 110492, Feb. 2022, doi: 10.1016/J.OCEANENG.2021.110492.
  • T. Boonkong, Y. O. Shen, Z. W. Guan, and W. J. Cantwell, The low velocity impact response of curvilinear-core sandwich structures. Int J Impact Eng, vol. 93, pp. 28–38, 2016, doi: 10.1016/j.ijimpeng.2016.01.012.
  • M. R. Yellur, H. Seidlitz, F. Kuke, K. Wartig, and N. Tsombanis, A low velocity impact study on press formed thermoplastic honeycomb sandwich panels. Compos Struct, vol. 225, no. November 2018, p. 111061, 2019, doi: 10.1016/j.compstruct.2019.111061.
  • Ilyas Bozkurt, Effect of geometric configurations and curvature angle of corrugated sandwich structures on impact behavior. Polym Compos, pp. 1–24, 2024.
  • M. ALBAYRAK and M. O. KAMAN, Production of Curved Surface Composites Reinforced With Rubber Layer. European Journal of Technic, vol. 11, no. 1, pp. 19–22, 2021, doi: 10.36222/ejt.824761.
  • I. Bozkurt, Determination of Deformation Behaviors and Energy Absorption of Lightweight Composite Lattice Cylinders With Different Structures. Int J Polym Sci, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/2280726.
  • H. E. Yalkın, R. Karakuzu, and T. Alpyıldız, Low-velocity impact behaviors of sandwich composites with different structural configurations of foam core: numerical study and experimental validation. Phys Scr, vol. 98, no. 11, Nov. 2023, doi: 10.1088/1402-4896/ad008f.
  • C. Atas, B. M. Icten, and M. Küçük, Thickness effect on repeated impact response of woven fabric composite plates. Compos B Eng, vol. 49, pp. 80–85, 2013, doi: 10.1016/j.compositesb.2013.01.019.
  • B. A. Gama, T. A. Bogetti, and J. W. Gillespie Jr, Progressive Damage Modeling of Plain-Weave Composites using LS-Dyna Composite Damage Model MAT162. 7th European LS-DYNA Conference, no. August 2014, 2009.
  • B. M. Icten, B. G. Kiral, and M. E. Deniz, Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates. Compos B Eng, vol. 50, pp. 325–332, 2013, doi: 10.1016/j.compositesb.2013.02.024.
  • İ. Bozkurt, Numerical Investigation of the Effects of Impactor Geometry on Impact Behavior of Sandwich Structures. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, Sep. 2024, doi: 10.17798/bitlisfen.1482456.

Investigation of low velocity impact performance of cylindrical sandwich structures arc-shaped core with different impact types and impact angles

Year 2025, Volume: 14 Issue: 1, 107 - 121, 15.01.2025
https://doi.org/10.28948/ngumuh.1551742

Abstract

The aim of this study is to investigate the impact performance of arc-shaped cylindrical sandwich composite structures for different geometries of impactors and different impact angles using the finite element method. The effects of striker shape, striker angle, facesheet thickness and impact point on maximum contact force, absorbed energy efficiency, maximum displacement and damage deformation are investigated. Low velocity impact simulations were performed in the LS DYNA finite element program. At the end of the study, the contact force values at the P2 point supported by the core structure are higher than the P1 (core unsupported) point. As the impactor angle increased (from θ=30˚ to 90˚), the contact force value increased 2.6 times and the energy absorption efficiency value increased 1.65 times. The maximum contact value obtained with the cone impactor is 35.1% and 73.7% higher than the cylinder and sphere-tipped impactors, respectively, while the energy absorption efficiency value is 37.1% and 36.2% higher, respectively. For all three impactors, matrix damage was found to be the largest and dominant damage type.

References

  • V. Crupi, E. Kara, G. Epasto, E. Guglielmino, and H. Aykul, Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches. Int J Impact Eng, vol. 77, pp. 97–107, 2015, doi: 10.1016/j.ijimpeng.2014.11.012.
  • M. O. Kaman, M. Y. Solmaz, and K. Turan, Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels. J Compos Mater, vol. 44, no. 24, pp. 2819–2831, 2010, doi: 10.1177/0021998310371541.
  • A. I. Ayten, Y. Polat, M. Sahbaz, and A. Seyhan, Effect of solution-blown nanofibrous web on quasi-static punch shear test results and quasi-static indentation behavior of carbon fiber-reinforced epoxy matrix composites. J Compos Mater, vol. 57, no. 24, pp. 3865–3875, Aug. 2023, doi: 10.1177/00219983231197351.
  • A. İ. Ayten, Investigation of mechanical properties and damage types of E-glass fiber reinforced epoxy matrix composites under various loadings. International Advanced Researches and Engineering Journal, vol. 7, no. 3, pp. 185–190, 2023, doi: 10.35860/iarej.1334883.
  • Z. Wu, L. Zhang, Z. Ying, J. Ke, and X. Hu, Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Compos B Eng, vol. 196, Sep. 2020, doi: 10.1016/j.compositesb.2020.108098.
  • J. Xiong, R. Ghosh, L. Ma, A. Vaziri, Y. Wang, and L. Wu, Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets. Compos Part A Appl Sci Manuf, vol. 56, pp. 226–238, Jan. 2014, doi: 10.1016/J.COMPOSITESA.2013.10.008.
  • M. Albayrak, M. O. Kaman, and I. Bozkurt, Experimental and Numerical Investigation of the Geometrical Effect on Low Velocity Impact Behavior for Curved Composites with a Rubber Interlayer. Applied Composite Materials, vol. 30, no. 2, pp. 507–538, 2023, doi: 10.1007/s10443-022-10094-5.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types. Materialpruefung/Materials Testing, vol. 65, no. 9, pp. 1349–1372, 2023, doi: 10.1515/mt-2023-0024.
  • İ. Bozkurt, M. Kaman, and M. Albayrak, LS-DYNA MAT162 Finding Material Inputs and Investigation of Impact Damage in Carbon Composite Plates. XVI. international research conference 2022., pp. 3–7, 2022.
  • B. Kazemianfar, M. Esmaeeli, and M. R. Nami, Response of 3D woven composites under low velocity impact with different impactor geometries. Aerosp Sci Technol, vol. 102, Jul. 2020, doi: 10.1016/j.ast.2020.105849.
  • M. Y. Solmaz and T. Topkaya, The flexural fatigue behavior of honeycomb sandwich composites following low velocity impacts. Applied Sciences (Switzerland), vol. 10, no. 20, pp. 1–14, 2020, doi: 10.3390/app10207262.
  • I. Bozkurt, M. O. Kaman, and M. Albayrak, Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types. Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, no. 5, p. 318, May 2024, doi: 10.1007/s40430-024-04865-3.
  • W. He, S. Lu, K. Yi, S. Wang, G. Sun, and Z. Hu, Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact. Int J Mech Sci, vol. 161–162, no. July, p. 105026, 2019, doi: 10.1016/j.ijmecsci.2019.105026.
  • W. He, J. Liu, B. Tao, D. Xie, J. Liu, and M. Zhang, Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures. Compos Struct, vol. 158, pp. 30–43, 2016, doi: 10.1016/j.compstruct.2016.09.009.
  • Y. Chen, K. Fu, S. Hou, X. Han, and L. Ye, Multi-objective optimization for designing a composite sandwich structure under normal and 45° impact loadings. Compos B Eng, vol. 142, no. December 2016, pp. 159–170, 2018, doi: 10.1016/j.compositesb.2018.01.020.
  • X. Zhang, F. Xu, Y. Zang, and W. Feng, Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact. Compos Struct, vol. 236, no. January, p. 111882, 2020, doi: 10.1016/j.compstruct.2020.111882.
  • W. He, J. Liu, S. Wang, and D. Xie, Low-velocity impact behavior of X-Frame core sandwich structures – Experimental and numerical investigation. Thin-Walled Structures, vol. 131, no. July, pp. 718–735, 2018, doi: 10.1016/j.tws.2018.07.042.
  • T. K. Demircioğlu, F. Balıkoğlu, O. İnal, N. Arslan, Ay, and A. Ataş, Experimental investigation on low-velocity impact response of wood skinned sandwich composites with different core configurations. Mater Today Commun, vol. 17, no. May, pp. 31–39, 2018, doi: 10.1016/j.mtcomm.2018.08.003.
  • J. Wang, A. M. Waas, and H. Wang, Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct, vol. 96, pp. 298–311, 2013, doi: 10.1016/j.compstruct.2012.09.002.
  • Y. Rong, J. Liu, W. Luo, and W. He, Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels. Compos B Eng, vol. 152, no. August, pp. 324–335, 2018, doi: 10.1016/j.compositesb.2018.08.130.
  • J. Liu, W. He, D. Xie, and B. Tao, The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures. Compos B Eng, vol. 111, pp. 315–331, 2017, doi: 10.1016/j.compositesb.2016.11.060.
  • A. Khalkhali, N. Geran Malek, and M. Bozorgi Nejad, Effects of the impactor geometrical shape on the non-linear low-velocity impact response of sandwich plate with CNTRC face sheets. Journal of Sandwich Structures and Materials, vol. 22, no. 4, pp. 962–990, May 2020, doi: 10.1177/1099636218778998.
  • W. He, J. Liu, S. Wang, and D. Xie, Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos Struct, vol. 189, pp. 37–53, Apr. 2018, doi: 10.1016/J.COMPSTRUCT.2018.01.024.
  • Z. Li et al., Impact response of a novel sandwich structure with Kirigami modified corrugated core. Int J Impact Eng, vol. 156, p. 103953, Oct. 2021, doi: 10.1016/J.Ijimpeng.2021.103953.
  • J. S. Yang et al., Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells. Compos Struct, vol. 238, no. August 2019, pp. 1–16, 2020, doi: 10.1016/j.compstruct.2020.112027.
  • Y. Cheng, K. Liu, Y. Li, Z. Wang, and J. Wang, Experimental and numerical simulation of dynamic response of U-type corrugated sandwich panels under low-velocity impact. Ocean Engineering, vol. 245, p. 110492, Feb. 2022, doi: 10.1016/J.OCEANENG.2021.110492.
  • T. Boonkong, Y. O. Shen, Z. W. Guan, and W. J. Cantwell, The low velocity impact response of curvilinear-core sandwich structures. Int J Impact Eng, vol. 93, pp. 28–38, 2016, doi: 10.1016/j.ijimpeng.2016.01.012.
  • M. R. Yellur, H. Seidlitz, F. Kuke, K. Wartig, and N. Tsombanis, A low velocity impact study on press formed thermoplastic honeycomb sandwich panels. Compos Struct, vol. 225, no. November 2018, p. 111061, 2019, doi: 10.1016/j.compstruct.2019.111061.
  • Ilyas Bozkurt, Effect of geometric configurations and curvature angle of corrugated sandwich structures on impact behavior. Polym Compos, pp. 1–24, 2024.
  • M. ALBAYRAK and M. O. KAMAN, Production of Curved Surface Composites Reinforced With Rubber Layer. European Journal of Technic, vol. 11, no. 1, pp. 19–22, 2021, doi: 10.36222/ejt.824761.
  • I. Bozkurt, Determination of Deformation Behaviors and Energy Absorption of Lightweight Composite Lattice Cylinders With Different Structures. Int J Polym Sci, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/2280726.
  • H. E. Yalkın, R. Karakuzu, and T. Alpyıldız, Low-velocity impact behaviors of sandwich composites with different structural configurations of foam core: numerical study and experimental validation. Phys Scr, vol. 98, no. 11, Nov. 2023, doi: 10.1088/1402-4896/ad008f.
  • C. Atas, B. M. Icten, and M. Küçük, Thickness effect on repeated impact response of woven fabric composite plates. Compos B Eng, vol. 49, pp. 80–85, 2013, doi: 10.1016/j.compositesb.2013.01.019.
  • B. A. Gama, T. A. Bogetti, and J. W. Gillespie Jr, Progressive Damage Modeling of Plain-Weave Composites using LS-Dyna Composite Damage Model MAT162. 7th European LS-DYNA Conference, no. August 2014, 2009.
  • B. M. Icten, B. G. Kiral, and M. E. Deniz, Impactor diameter effect on low velocity impact response of woven glass epoxy composite plates. Compos B Eng, vol. 50, pp. 325–332, 2013, doi: 10.1016/j.compositesb.2013.02.024.
  • İ. Bozkurt, Numerical Investigation of the Effects of Impactor Geometry on Impact Behavior of Sandwich Structures. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, Sep. 2024, doi: 10.17798/bitlisfen.1482456.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Solid Mechanics, Numerical Methods in Mechanical Engineering, Numerical Modelling and Mechanical Characterisation
Journal Section Research Articles
Authors

İlyas Bozkurt 0000-0001-7850-2308

Early Pub Date December 10, 2024
Publication Date January 15, 2025
Submission Date September 17, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Bozkurt, İ. (2025). Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 107-121. https://doi.org/10.28948/ngumuh.1551742
AMA Bozkurt İ. Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi. NOHU J. Eng. Sci. January 2025;14(1):107-121. doi:10.28948/ngumuh.1551742
Chicago Bozkurt, İlyas. “Yay-Şekilli Silindirik Sandviç Kompozit yapıların düşük hızlı Darbe performanslarının Farklı Vurucu Tipleri Ve Darbe açıları için Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (January 2025): 107-21. https://doi.org/10.28948/ngumuh.1551742.
EndNote Bozkurt İ (January 1, 2025) Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 107–121.
IEEE İ. Bozkurt, “Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 107–121, 2025, doi: 10.28948/ngumuh.1551742.
ISNAD Bozkurt, İlyas. “Yay-Şekilli Silindirik Sandviç Kompozit yapıların düşük hızlı Darbe performanslarının Farklı Vurucu Tipleri Ve Darbe açıları için Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (January 2025), 107-121. https://doi.org/10.28948/ngumuh.1551742.
JAMA Bozkurt İ. Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi. NOHU J. Eng. Sci. 2025;14:107–121.
MLA Bozkurt, İlyas. “Yay-Şekilli Silindirik Sandviç Kompozit yapıların düşük hızlı Darbe performanslarının Farklı Vurucu Tipleri Ve Darbe açıları için Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2025, pp. 107-21, doi:10.28948/ngumuh.1551742.
Vancouver Bozkurt İ. Yay-Şekilli silindirik sandviç kompozit yapıların düşük hızlı darbe performanslarının farklı vurucu tipleri ve darbe açıları için incelenmesi. NOHU J. Eng. Sci. 2025;14(1):107-21.

download