Research Article
BibTex RIS Cite

Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi

Year 2025, Volume: 14 Issue: 1, 234 - 243, 15.01.2025
https://doi.org/10.28948/ngumuh.1578819

Abstract

Bu çalışmada, Al-Cu-Mg alaşımı 450oC (A), 500oC (B) ve 550oC (C) sıcaklıklarında sıcak presleme işlemine tabi tutulmuştur. Sıcak presleme yöntemi kullanılarak yoğunlaştırılan A, B ve C kodlu numunelerin sıcak pres sonrası mikro yapısı ve tribolojik özelliklerinin incelenmesi gerçekleştirilmiştir. Deneyler sonucunda elde edilen mikro yapı incelemelerinde A kodlu numunedeki porozite miktarının B ve C kodlu numunelerdeki porozite oranına göre yüksek olduğu ve artan presleme sıcaklığı ile yoğunluğun doğru orantılı olarak arttığı belirlenmiştir. Buna ek olarak artan pres sıcaklığı ile birlikte iç yapıda bulunan α-Al fazının nispeten daha düzgün ve eş taneler şeklinde yapıya homojen dağıldığı gözlenmiştir. En yüksek sertlik değeri 550oC’de sıcak presleme işlemine tabi tutulan C kodlu numunede elde edilmiştir. Buna göre, C numunesinin sertlik değeri B kodlu numuneye göre %20, A kodlu numuneye göre %26, mikro sertlik değeri ise B kodlu numuneye göre %30 A kodlu numuneye göre %33’lük bir artış sergilemiştir. Ayrıca A, B ve C kodlu numunelerin yoğunluk değerleri sırasıyla, 2.7554, 2.7640 ve 2.7655 gr/cm3 olarak belirlenmiştir. Yapılan sürtünme ve aşınma testlerinden elde edilen hacim kaybı-çevrim sayısı verilerine göre en düşük aşınma direnci A numunesinde, en yüksek aşınma direnci ise C numunesinde elde edilmiştir. Buna göre 25x103, 50x103 ve 75x103 çevrim sayısındaki C kodlu numune A numunesine göre sırasıyla %39, %23 ve %45 daha yüksek aşınma direnci sergilemiştir. Farklı sıcaklıklarda presleme işlemi yapılan A, B ve C numunelerinin aşınma yüzeylerinin, aşınma parçacıklarının ve bilye yüzeylerinin benzer görüntü sergilediği belirlenmiştir. Buna göre aşınma yüzeyleri sıvama tabakalarından ve soyulmalardan, aşınma parçacıklarının irili ufaklı tozlardan bilye yüzeylerinin ise sıvama tabakalarından meydana geldiği gözlenmiştir.

References

  • S. J. Maddox, Review of fatigue assessment procedures for welded aluminium structures. International Journal of Fatigue, 25 (12), 1359–1378, 2003. https://doi.org/10.1016/S0142-1123(03)00063-X.
  • R.E. Sanders, T.H. Sanders, J.T. Stanley, Relationships Between Microstructure, Conductivity, and Mechanical Properties of Alloy 2024-T4 (Ii)., Aluminium, 59 (2), 143-148, 1983.
  • D.G. Altenpohl, Present structure and future trends in key materials ındustries, Materials in World Perspective: Assessment of Resources, 21–126, 1980.https://doi.org/10.1007/978-3-642-81453-2_2.
  • G.E. Totten, D.S. Mackenzie, Handbook of Aluminum: Physical Metallurgy and Processes, New york-Basel, 2015.
  • M. Gazizov, R. Kaibyshev, Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy, Materials Science and Engineering: A, 702, 29–40, 2017. https://doi.org/10.1016/j.msea.2017.06.110.
  • W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, 280 (1), 37–49, 2000. https://doi.org/10.1016/S0921-5093(99)00653-X
  • B. Stojanovic, М. Bukvic, I. Epler, Application of aluminum and aluminum alloys in engineering, Applied Engineering Letters, 3 (2), 52–62, 2018. https://doi.org/10.18485/aeletters.2018.3.2.2
  • M. Tisza, Z. Lukács, High strength aluminum alloys in car manufacturing, IOP Conference Series: Materials Science and Engineering, 418 (1), 2018. https://doi.org/10.1088/1757-899X/418/1/012033
  • J. Hirsch, Aluminium alloys for automotive application, Materials Science Forum, 242, 33–50, 1997.https://doi.org/10.4028/www.scientific.net/msf.242.33.
  • J. Hirsch, Aluminium in innovative light-weight car design, Materials Transaction, 52 (5), 818–24, 2011. https://doi.org/10.2320/matertrans.L-MZ201132.
  • J.P. Adams, History of Powder Metallurgy, Powder Metallurgy, 7, 3–8, 2015. https://doi.org/10.31399/ asm.hb.v07.a0006017.
  • J.R. Pickens, Aluminium powder metallurgy technology for high-strength applications, Journal of Materials Science, 16 (6), 1437–1457, 1981. https://doi.org/10.1007/bf00553958.
  • E. Fitriatun, Introduction to powder metallurgy the process and its products, European Powder Metallurgy Association, 53 (9), 1689–1699, 2019.
  • J.R. Moon, Introduction to PM, A Residential training course for young materials engineers, course booklet, Europen Powder Metallurgy Association, London, 2007.
  • H. Hyer, L. Zhou, S. Park, G. Gottsfritz, G. Benson, B. Tolentino, B. McWilliams, K. Cho, Y. Sohn, Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy, Metallography Microstructure and Analysis, 9 (4), 484–502, 2020. https://doi.org/ 10.1007/s13632-020-00659-w.
  • M. Rahimian, N. Ehsani, N. Parvin, H. reza Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy, Journal of Materials Process Technology, 209 (14), 5387–5393, 2009. https://doi.org/10.1016/j.jmatprotec. 2009.04.007.
  • B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys, Powder Metallurgy of Non-ferrous Metals, 70 (5), 644–649, 2018. https://doi.org/ 10.1007/s11837-018-2793-4.
  • T.K. Akopyan, N.A. Belov, A.G. Padalko, N. V. Letyagin, Effect of Hot Isostatic Pressing on the Structure and the Mechanical Properties of an Al–7Si–7Cu Composite Alloy, Russian Metallurgy, 2019 (9), 843–849, 2019. https://doi.org/10.1134/S0036029519090027.
  • Q. Teng, X. Li, Q. Wei, Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing, Journal of Wuhan University Technology Materials Science Education, 35 (1), 183–191, 2020. https://doi.org/10.1007/s11595-020-2242-4.
  • H.R. Ammar, A.M. Samuel, H.W. Doty, F.H. Samuel, The Influence of Hot Isostatic Pressing on the Fatigue Life of Al–Si–Cu–Mg 354-T6 Casting Alloy, International Journal of Metalcasting, 16 (3), 1315–1326, 2022. https://doi.org/10.1007/s40962-021-00691-8.
  • X. Zhao, J. Meng, C. Zhang, W. Wei, F. Wu, G. Zhang, A novel method for improving the microstructure and the properties of Al-Si-Cu alloys prepared using rapid solidification/powder metallurgy, Materials Today Communicaion, 35, 2023. https://doi.org/10.1016 /j.mtcomm.2023.105802.
  • K.R. Suresh, H.B. Niranjan, P.M. Jebaraj, M.P. Chowdiah, Tensile and wear properties of aluminum composites, Wear, 255 (1–6), 638–642, 2003. https://doi.org/10.1016/S0043-1648(03)00292-8.
  • S.H. Huo, M. Qian, G.B. Schaffer, E. Crossin, Aluminium powder metallurgy, Fundamentals Aluminium Metallurgy Production Processing and Applications, 2011, 655–701, 2011. https://doi.org/ 10.1533/9780857090256.3.655.
  • P.D. Liddiard, Aluminium powder metallurgy in perspective, Powder Metallurgy, 27 (4), 193–200, 1984. https://doi.org/10.1179/pom.1984.27.4.193.
  • P. Rambabu, N. Eswara Prasad, V. V. Kutumbarao, R.J.H. Wanhill, Aluminium Alloys for Aerospace Applications, Aerospace Materials and Material Technologies, 8 29–52, 2017. https://doi.org/10.1007 /978-981-10-2134-3_2.
  • F. Stergioudi, A. Prospathopoulos, A. Farazas, E.C. Tsirogiannis, N. Michailidis, Mechanical Properties of AA2024 Aluminum/MWCNTs Nanocomposites Produced Using Different Powder Metallurgy Methods, Metals (Basel), 12 (8), 2022. https://doi.org/10.3390/met12081315.
  • O. V. Rofman, A.S. Prosviryakov, A. V. Mikhaylovskaya, A.D. Kotov, A.I. Bazlov, V. V. Cheverikin, Processing and Microstructural Characterization of Metallic Powders Produced from Chips of AA2024 Alloy, Jom Aluminium Recycling and Environmental Footprint, 71 (9), 2986–2995, 2019. https://doi.org/10.1007/s11837-019-03581-x.
  • M. Jafari, M.H. Enayati, M.H. Abbasi and F. Karimzadeh, Compressive and wear behaviours of bulk nanostructured Al2024 alloy, Materials and Design, 21 (2), 2010. https://doi.org/10.1016/j.matdes.2009.08.0 20
  • M. Beder, S. B. Akçay, T. Varol and H. Çuvalcı, The Effect of Heat Treatment on the Mechanical Properties and Oxidation Resistance of AlSi10Mg Alloy, Arabian Journal for Science and Engineering, 49, 15335–15346, 2024. https://doi.org/10.1007/s13369-024-08971-1.
  • M. Beder, Effect of hot pressing method on the microstructure and mechanical properties of AlSi10Mg alloy, Niğde Ömer Halisdemir University Journal of Engineering Sciences, 12 (4), 1420-1427, 2024. https://doi.org/10.28948/ngumuh.1520826

Investigation of the microstructure and tribological properties of Al-Cu-Mg alloys produced by powder metallurgy

Year 2025, Volume: 14 Issue: 1, 234 - 243, 15.01.2025
https://doi.org/10.28948/ngumuh.1578819

Abstract

In this study, Al-Cu-Mg alloy was hot pressed at 450oC (A), 500oC (B) and 550oC (C). The microstructure and tribological properties of the samples A, B and C, which were densified by hot pressing method, were investigated after hot pressing. In the microstructure examinations obtained as a result of the experiments, it was determined that the amount of porosity in the sample coded A was higher than the porosity ratio in the samples coded B and C and the density increased in direct proportion with increasing pressing temperature. In addition, with increasing pressing temperature, it was observed that the α-Al phase in the microstructure was relatively more uniform and homogeneously distributed in the structure in the form of equal grains. The highest hardness value was obtained in sample C, which was subjected to hot pressing at 550oC. Accordingly, the hardness value of sample C increased by 20% compared to sample B, 26% compared to sample A, and the microhardness value increased by 30% compared to sample B and 33% compared to sample A. In addition, the density values of specimens A, B and C were determined as 2.7554, 2.7640 and 2.7655 g/cm3, respectively. According to the volume loss-cycle number data obtained from the friction and wear tests, the lowest wear resistance was obtained in sample A and the highest wear resistance was obtained in sample C. Accordingly, at 25x103, 50x103 and 75x103 cycles, sample C exhibited 39%, 23% and 45% higher wear resistance than sample A, respectively. It was determined that the wear surfaces, wear particles and ball surfaces of specimens A, B and C, which were pressed at different temperatures, exhibited a similar appearance. Accordingly, it was observed that the wear surfaces consisted of smearing layers and delamination, the wear particles consisted of large and small debris and the ball surfaces consisted of smearing layers.

References

  • S. J. Maddox, Review of fatigue assessment procedures for welded aluminium structures. International Journal of Fatigue, 25 (12), 1359–1378, 2003. https://doi.org/10.1016/S0142-1123(03)00063-X.
  • R.E. Sanders, T.H. Sanders, J.T. Stanley, Relationships Between Microstructure, Conductivity, and Mechanical Properties of Alloy 2024-T4 (Ii)., Aluminium, 59 (2), 143-148, 1983.
  • D.G. Altenpohl, Present structure and future trends in key materials ındustries, Materials in World Perspective: Assessment of Resources, 21–126, 1980.https://doi.org/10.1007/978-3-642-81453-2_2.
  • G.E. Totten, D.S. Mackenzie, Handbook of Aluminum: Physical Metallurgy and Processes, New york-Basel, 2015.
  • M. Gazizov, R. Kaibyshev, Precipitation structure and strengthening mechanisms in an Al-Cu-Mg-Ag alloy, Materials Science and Engineering: A, 702, 29–40, 2017. https://doi.org/10.1016/j.msea.2017.06.110.
  • W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, 280 (1), 37–49, 2000. https://doi.org/10.1016/S0921-5093(99)00653-X
  • B. Stojanovic, М. Bukvic, I. Epler, Application of aluminum and aluminum alloys in engineering, Applied Engineering Letters, 3 (2), 52–62, 2018. https://doi.org/10.18485/aeletters.2018.3.2.2
  • M. Tisza, Z. Lukács, High strength aluminum alloys in car manufacturing, IOP Conference Series: Materials Science and Engineering, 418 (1), 2018. https://doi.org/10.1088/1757-899X/418/1/012033
  • J. Hirsch, Aluminium alloys for automotive application, Materials Science Forum, 242, 33–50, 1997.https://doi.org/10.4028/www.scientific.net/msf.242.33.
  • J. Hirsch, Aluminium in innovative light-weight car design, Materials Transaction, 52 (5), 818–24, 2011. https://doi.org/10.2320/matertrans.L-MZ201132.
  • J.P. Adams, History of Powder Metallurgy, Powder Metallurgy, 7, 3–8, 2015. https://doi.org/10.31399/ asm.hb.v07.a0006017.
  • J.R. Pickens, Aluminium powder metallurgy technology for high-strength applications, Journal of Materials Science, 16 (6), 1437–1457, 1981. https://doi.org/10.1007/bf00553958.
  • E. Fitriatun, Introduction to powder metallurgy the process and its products, European Powder Metallurgy Association, 53 (9), 1689–1699, 2019.
  • J.R. Moon, Introduction to PM, A Residential training course for young materials engineers, course booklet, Europen Powder Metallurgy Association, London, 2007.
  • H. Hyer, L. Zhou, S. Park, G. Gottsfritz, G. Benson, B. Tolentino, B. McWilliams, K. Cho, Y. Sohn, Understanding the Laser Powder Bed Fusion of AlSi10Mg Alloy, Metallography Microstructure and Analysis, 9 (4), 484–502, 2020. https://doi.org/ 10.1007/s13632-020-00659-w.
  • M. Rahimian, N. Ehsani, N. Parvin, H. reza Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy, Journal of Materials Process Technology, 209 (14), 5387–5393, 2009. https://doi.org/10.1016/j.jmatprotec. 2009.04.007.
  • B. Chen, S.K. Moon, X. Yao, G. Bi, J. Shen, J. Umeda, K. Kondoh, Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys, Powder Metallurgy of Non-ferrous Metals, 70 (5), 644–649, 2018. https://doi.org/ 10.1007/s11837-018-2793-4.
  • T.K. Akopyan, N.A. Belov, A.G. Padalko, N. V. Letyagin, Effect of Hot Isostatic Pressing on the Structure and the Mechanical Properties of an Al–7Si–7Cu Composite Alloy, Russian Metallurgy, 2019 (9), 843–849, 2019. https://doi.org/10.1134/S0036029519090027.
  • Q. Teng, X. Li, Q. Wei, Diffusion Bonding of Al 6061 and Cu by Hot Isostatic Pressing, Journal of Wuhan University Technology Materials Science Education, 35 (1), 183–191, 2020. https://doi.org/10.1007/s11595-020-2242-4.
  • H.R. Ammar, A.M. Samuel, H.W. Doty, F.H. Samuel, The Influence of Hot Isostatic Pressing on the Fatigue Life of Al–Si–Cu–Mg 354-T6 Casting Alloy, International Journal of Metalcasting, 16 (3), 1315–1326, 2022. https://doi.org/10.1007/s40962-021-00691-8.
  • X. Zhao, J. Meng, C. Zhang, W. Wei, F. Wu, G. Zhang, A novel method for improving the microstructure and the properties of Al-Si-Cu alloys prepared using rapid solidification/powder metallurgy, Materials Today Communicaion, 35, 2023. https://doi.org/10.1016 /j.mtcomm.2023.105802.
  • K.R. Suresh, H.B. Niranjan, P.M. Jebaraj, M.P. Chowdiah, Tensile and wear properties of aluminum composites, Wear, 255 (1–6), 638–642, 2003. https://doi.org/10.1016/S0043-1648(03)00292-8.
  • S.H. Huo, M. Qian, G.B. Schaffer, E. Crossin, Aluminium powder metallurgy, Fundamentals Aluminium Metallurgy Production Processing and Applications, 2011, 655–701, 2011. https://doi.org/ 10.1533/9780857090256.3.655.
  • P.D. Liddiard, Aluminium powder metallurgy in perspective, Powder Metallurgy, 27 (4), 193–200, 1984. https://doi.org/10.1179/pom.1984.27.4.193.
  • P. Rambabu, N. Eswara Prasad, V. V. Kutumbarao, R.J.H. Wanhill, Aluminium Alloys for Aerospace Applications, Aerospace Materials and Material Technologies, 8 29–52, 2017. https://doi.org/10.1007 /978-981-10-2134-3_2.
  • F. Stergioudi, A. Prospathopoulos, A. Farazas, E.C. Tsirogiannis, N. Michailidis, Mechanical Properties of AA2024 Aluminum/MWCNTs Nanocomposites Produced Using Different Powder Metallurgy Methods, Metals (Basel), 12 (8), 2022. https://doi.org/10.3390/met12081315.
  • O. V. Rofman, A.S. Prosviryakov, A. V. Mikhaylovskaya, A.D. Kotov, A.I. Bazlov, V. V. Cheverikin, Processing and Microstructural Characterization of Metallic Powders Produced from Chips of AA2024 Alloy, Jom Aluminium Recycling and Environmental Footprint, 71 (9), 2986–2995, 2019. https://doi.org/10.1007/s11837-019-03581-x.
  • M. Jafari, M.H. Enayati, M.H. Abbasi and F. Karimzadeh, Compressive and wear behaviours of bulk nanostructured Al2024 alloy, Materials and Design, 21 (2), 2010. https://doi.org/10.1016/j.matdes.2009.08.0 20
  • M. Beder, S. B. Akçay, T. Varol and H. Çuvalcı, The Effect of Heat Treatment on the Mechanical Properties and Oxidation Resistance of AlSi10Mg Alloy, Arabian Journal for Science and Engineering, 49, 15335–15346, 2024. https://doi.org/10.1007/s13369-024-08971-1.
  • M. Beder, Effect of hot pressing method on the microstructure and mechanical properties of AlSi10Mg alloy, Niğde Ömer Halisdemir University Journal of Engineering Sciences, 12 (4), 1420-1427, 2024. https://doi.org/10.28948/ngumuh.1520826
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Material Design and Behaviors, Tribology
Journal Section Research Articles
Authors

Murat Beder 0000-0001-8117-2151

Early Pub Date December 19, 2024
Publication Date January 15, 2025
Submission Date November 4, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Beder, M. (2025). Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(1), 234-243. https://doi.org/10.28948/ngumuh.1578819
AMA Beder M. Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi. NOHU J. Eng. Sci. January 2025;14(1):234-243. doi:10.28948/ngumuh.1578819
Chicago Beder, Murat. “Toz Metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının Mikroyapı Ve Tribolojik özelliklerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 1 (January 2025): 234-43. https://doi.org/10.28948/ngumuh.1578819.
EndNote Beder M (January 1, 2025) Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 1 234–243.
IEEE M. Beder, “Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi”, NOHU J. Eng. Sci., vol. 14, no. 1, pp. 234–243, 2025, doi: 10.28948/ngumuh.1578819.
ISNAD Beder, Murat. “Toz Metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının Mikroyapı Ve Tribolojik özelliklerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/1 (January 2025), 234-243. https://doi.org/10.28948/ngumuh.1578819.
JAMA Beder M. Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi. NOHU J. Eng. Sci. 2025;14:234–243.
MLA Beder, Murat. “Toz Metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının Mikroyapı Ve Tribolojik özelliklerinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 1, 2025, pp. 234-43, doi:10.28948/ngumuh.1578819.
Vancouver Beder M. Toz metalurjisi yöntemiyle üretilen Al-Cu-Mg alaşımlarının mikroyapı ve tribolojik özelliklerinin incelenmesi. NOHU J. Eng. Sci. 2025;14(1):234-43.

download