Research Article
BibTex RIS Cite

University campus entrance volatile organic compound levels and

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

Volatile Organic Compounds (VOCs) exert a considerable influence on atmospheric chemistry and human health. The principal sources of VOCs are the use of solvents, fossil fuels, vehicle exhausts and smoking. The objective of the study was to ascertain the outdoor and indoor concentrations of VOCs from vehicle exhausts at the main entrance gates of the campus and to evaluate the potential health effects of inhalation of the detected VOCs on the security personnel working at the entrance gates. The temporal framework for data collection was determined by the working hours of personnel stationed at the entrance gates. The mean VOC concentrations at the sampling points were 11.9 µg/m³ at night and 9.6 µg/m³ during the day at the East Gate, and 6.8 µg/m³ at night and 8.8 µg/m³ during the day in the outdoor air. The concentration of VOCs in the outdoor air was found to be 12.3 µg/m³ at night and 16.4 µg/m³ during the day, and 6.3 µg/m³ at night and 9.3 µg/m³ during the day in the outdoor air. The carcinogenic risks associated with lifetime exposure to VOCs are typically above the acceptable risk level of 1.0×10−6. The chronic toxic effect value for both indoor and outdoor air VOCs is acceptable (HQ<1).

References

  • Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations, 1999.
  • A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer and C. Geron. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics. 6, 3181–3210, 2006. https://doi.org/10.5194/acp-6-3181-2006.
  • J. Williams and R. Koppmann. Volatile Organic Compounds in the Atmosphere: An Overview, in: Volatile Organic Compounds in the Atmosphere. Blackwell Publishing Ltd., Oxford, UK, 2007.
  • H. Hellen, H. Hakola and T. Laurila. Determination of source contributions of NMHCs in Helsinki (60oN, 25oE) using chemical mass balance and the Unmix multivariate receptor models. Atmospheric Environment. 37, 1413–1424, 2003. http://dx.doi.org/ 10.1016/S1352-2310 (02)01049-X.
  • S. Demir, A. Saral, F. Ertürk, S. L., Kuzu, B. İ. Goncaloğlu and G. Demir. Effect of diurnal changes in VOC source strengths on performances of receptor models. Environmental Science and Pollution Research International. 19, 5, 1503-1514, 2011. http://dx.doi.org/ 10.1007/s11356-011-0636-8.
  • I. Schifter, M. Magdaleno, L. Díaz, B. Krüger, J. León, M. E. Palmerín, R. Casas, A. Melgarejo and E. López-Salinas. Contribution of the gasoline distribution cycle to volatile organic compound emissions in the metropolitan area of Mexico City. Journal of the Air & Waste Management Association. 52, 535–541, 2002. http://dx.doi.org/ 10.1080/10473289.2002.10470803.
  • V. A. Lanz, B. Buchmann, C. Hueglin, R. Locher, S. Reimann and J. Staehelin. Factor analytical modeling of C2–C7 hydrocarbon sources at an urban background site in Zurich (Switzerland): changes between 1993–1994 and 2005–2006. Atmospheric Chemistry and Physics. 8, 1, 907-955, 2008. http://dx.doi.org/10.5194 /acpd-8-907-2008.
  • R.J. Yokelson, T.J. Christian, T. G. Karl and A. Guenther. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmospheric Chemistry and Physics. 8, 13, 3509–3527, 2008. https://doi.org/ 10.5194/ acp-8-3509-2008.
  • A. Latella, G. Stani, L. Cobelli, M. Duane, H. Junninen, C. Astorga and B. R. Larsen. Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. Journal of Chromatography. A. 15, 1071, 1-2, 29–39, 2005. https://doi.org/10.1016/j. chroma.2004.12.043.
  • C. H. Lai, K. S. Chen, Y. T. Ho, Y. P. Peng and Y. M. Chou. Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan. Atmospheric Environment. 39, 25, 4543–4559, 2005. https://doi.org/10.1016/j.atmosenv.2005. 03.044.
  • H. Pekey, B. Pekey, D. Arslanbaş, Z. Bozkurt, G. Doğan and G. Tuncel. Source Identification of Volatile Organic Compounds and Particulate Matters in an Urban and Industrial Areas of Turkey. Ekoloji, 24, 94, 1-9, 2015. https://doi.org/10.5053/ekoloji.2015.941.
  • X. Cao, Z. Yao, X. Shen, Y. Ye and X. Jiang. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China. Atmospheric Environment, 124, 146–115, 2015. https://doi.org/10. 1016/j.atmosenv.2015.06.019.
  • Environmental Protection Agency. Integrated Risk Information System (IRIS). Integrated risk information for benzene (monograph on the internet). Washington, DC: U.S. Environmental Protection Agency,2014.
  • L. Zhang, J. Wang, X. Hu, J. Zhou, M. Zhao, J. Zhang, Y. Bo, Y. Huang and Y. Zhang. VOCs and PM concentrations in underground parking garages of the commercial center and high-rise residential buildings. Air Quality Atmosphere & Health. 14, 1117–1131, 2021. https://doi.org/10.1007/s11869-021-01003-z.
  • S. Yurdakul, M. Civan and G., Tuncel. Volatile organic compounds in suburban Ankara atmosphere, Turkey: Sources and variability. Atmospheric Research, 120–121, 298-311, 2013. https://doi.org/10.1016/j.atmosres .2012.09.015.
  • Z. Bozkurt, G. Doğan, D. Arslanbaş, B. Pekey, H. Pekey, Y. Dumanoğlu, A. Bayram and G. Tuncel. Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environmental Monitoring and Assessement. 187, 9, 590, 2015. https://doi.org/10.1007/s10661-015-4816-8.
  • M. A. Zahed, S. Salehi, M. A. Khoei, P. Esmaeili, L. Mohajeri. Risk assessment of Benzene, Toluene, Ethyl benzene, and Xylene (BTEX) in the atmospheric air around the world: A review. Toxicol In Vitro. 12, 98, 105825, 2024. https://doi.org/10.1016/j.tiv.2024.1058 25.
  • National Ambient Air Quality Standards (40 CFR part 50), NAAQS Table, Environmental Protection Agency, 1990.
  • N. Shinohara, Y. Okazaki, A. Mizukoshi and S. Wakamatsu. Exposure to benzene, toluene, ethylbenzene, xylene, formaldehyde, and acetaldehyde in and around gas stations in Japan. Chemosphere. 222, 923–931, 2019. https://doi.org/10.1016/j.chemosphere. 2019.01.166.
  • W. Loonsamrong, N. Taneepanichskul, S. Puangthongthub and T. Tungsaringkarn. Health risk assessment and BTEX exposure among car park workers at a parking structure in Bangkok, Thailand, Journal of Health Research. 29, 4, 285-92, 2015. https://doi.org/10.14456/jhr.2015.12.
  • A. Müezzinoğlu, M. Odabaşı and L. Onat. Volatile organic compounds in the air of Izmir, Turkey. Atmospheric Environment, 35, 753–760, 2001. https:// doi.org/10.1016/S1352-2310(00)00420-9.
  • T. Elbir, B. Cetin, E. Cetin, A. Bayram and M. Odabası. Characterization of Volatile Organic Compounds (VOCs) and Their Sources in the Air of Izmir, Turkey. Environmental Monitoring and Assessment. 133, 149–160, 2007. https://doi.org/10.1007/s10661-006-9568-z.
  • ASTM D3686-20, Standard Practice for Sampling Atmospheres to Collect Organic Compound Vapors (Activated Charcoal Tube Adsorption Method), 2020.
  • DC EPA/600/Z-92/001, Guidelines for Exposure Assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, 1992.
  • Exposure Factors Handbook: 2011, United States Environmental Protection Agency (EPA), Edition, 600,US, 2011.
  • IARC Monographs on the Identification of Carcinogenic Hazards to Humans – List of Classifications vols. 1 – 123,2019.
  • California OEHHA Lists New Chemicals in Proposition 65 Chemical List, 2019.
  • CEP, U.S. EPA'S Cumulative Exposure Project, 1990.
  • R. Kerbachi, M. Boughedaoui, L. Bounoua and M. Keddam. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmospheric Environment. 40, 21, 3995-4003, 2006. https://doi.org/10.1016/j.atm osenv.2006.02.033.
  • A. P. Soldatos, E. B. Bakeas and P. A. Siskos. Occupational Exposure to BTEX of Workers in Car Parkings and Gasolıne Service Statıons in Athens, Greece. Fresenius Environmental Bulletin, 12, 9,1064-1070, 2003.
  • W.P.L. Carter. Development of ozone reactivity scales for volatile organic compounds. Journal of Air Waste Management Association. 44, 881–899, 1994. https:// doi.org/10.1080/1073161X.1994.10467290.
  • M. A. Parra, L. Gonzalez, D. Elustondo, J. Garrigo, R. Bermejo and J. M. Santamaria. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Science of the Total Environment. 370, 157–167, 2006. https://doi.org/10. 1016/j.scitotenv.2006.06.022.
  • I. L. Gee and C. J. Sollars. Ambient air levels of volatile organic compounds in Latin American and Asian cities. Chemosphere, 36, 11, 2497–2506, 1998. https://doi. org/10.1016/S0045-6535(97)10217-X.
  • K. Na, K. C. Moon and Y. P. Kim. Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmospheric Environment, 39,30, 5517–5524, 2005. https://doi.org /10.1016/j.atmosenv.2005.06.005.
  • M. T. Latif, H. H. Abd Hamid, F. Ahamad, M. F. Khan, M. S. M. Nadzir, M. Othman, M. Sahani, M. I. A. Wahab, N. Mohamad and R. Uning. BTEX compositions and its potential health impacts in Malaysia. Chemosphere, 237, 124451, 2019. https:// doi.org/10.1016/j.chemosphere.2019.124451.
  • F. Soleimani, S. Dobaradaran, G. E. De-la-Torre, T. C. Schmidt, and R. Saeedi. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. The Science of the Total Environment, 20, 813, 152667, 2022. https://doi. org/10.1016/j.scitotenv.2021.152667.
  • N. Taneepanichsku, W. Loonsamrong, T. Tungsaringkarn, B. Gelaye and M. A. Williams. Occupational exposure to BTEX compounds among enclosed multi-storey car park workers in central Bangkok area. Indoor and Built Environment, 27, 5, 622-629, 2018. https://doi.org/10.1177/1420326X166 89408.
  • K. Na, Y. P. Kim, I. Moon and K. C. Moon. Chemical composition of VOC major emission sources in the Seoul atmosphere. Chemosphere. 55, 585–594, 2024. https://doi.org/10.1016/j.chemosphere.2004.01.010.
  • Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air, Official Journal of the ECL, 313, 12–21, 2000.
  • B. Barletta, S. Meinardi, I J. Simpson, S. Zou, F. Sherwood Rowland and D. R. Blake. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmospheric Environment. 42, 4393-4408, 2008. https://doi.org/10. 1016/j.atmosenv.2008.01.028.
  • J. Zhu, R. Newhook, L. Marro and C. C. Chan. Selected volatile organic compounds in residential air in the city of Ottawa, Canada. Environmental Science and Technology. 39, 3964–3971, 2005. https://doi.org/10. 1021/es050173u.
  • A. N. Baghani, R. Rostami, H. Arfaeinia, S. Hazrati, M. Fazlzadeh and M. Delikhoon. BTEX in indoor air of beauty salons: risk assessment, levels and factors influencing their concentrations. Ecotoxicology and Environmental Safety. 159, 102–108, 2018. https://doi. org/10.1016/j.ecoenv.2018.04.044.
  • S. Chaiklieng, P. Suggaravetsiri and H. Autrup. Risk assessment on benzene exposure among gasoline station workers. International Journal of Environmental Research and Public Health. 16, 14, 2545, 2019. https://doi.org/10.3390/ijerph16142545.

Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

Uçucu Organik Bileşikler (UOB’ler), atmosfer kimyası ve insan sağlığını önemli ölçüde etkiler. UOB’lerin en önemli kaynakları solvent kullanımı, fosil yakıtlar, araç egzozları ve sigaradır. Çalışmada, araç egzozlarından kaynaklanan UOB’lerin kampüs ana giriş kapılarında dış hava ve iç ortamdaki konsantrasyonlarının belirlenmesi ve tespit edilen UOB’lerin solunması ile giriş kapılarında görevli güvenlik personelinde oluşturacağı sağlık etkilerinin değerlendirilmesi amaçlanmıştır. Örnekleme süresi, giriş kapılarında görevli personelin çalışma süreleri dikkate alınarak belirlenmiştir. Örnekleme noktalarındaki ortalama UOB konsantrasyonları Doğu Kapısı’nda, iç ortamda gece 11.9 µg/m3, gündüz 9.6 µg/m3, dış havada gece 6.8 µg/m3 gündüz 8.8 µg/m3 olarak tespit edilmiştir. Batı Kapısı’nda ortalama UOB konsantrasyonları iç ortamda gece 12.3 µg/m3, gündüz 16.4 µg/m3, dış havada gece 6.3 µg/m3, gündüz 9.3 µg/m3 olarak tespit edilmiştir. Yaşam boyu UOB’lere maruz kalmanın yol açtığı kanserojen risk genel olarak kabul edilebilir risk seviyesi olan 1.0×10−6'nın üzerindedir. Hem iç ortam hem de dış havadaki UOB’ler için kronik toksik etki değeri kabul edilebilir düzeydedir (HQ<1).

Thanks

Dokuz Eylül Üniversitesi Çevre Mühendisliği Bölümü Hava Kirliliği Laboratuvarı’na UOB analizlerinde, Hasan Altıok ve Ersan Günel’e örnekleyicilerin kurulumunda gösterdikleri destek için teşekkür ederiz.

References

  • Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations, 1999.
  • A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer and C. Geron. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics. 6, 3181–3210, 2006. https://doi.org/10.5194/acp-6-3181-2006.
  • J. Williams and R. Koppmann. Volatile Organic Compounds in the Atmosphere: An Overview, in: Volatile Organic Compounds in the Atmosphere. Blackwell Publishing Ltd., Oxford, UK, 2007.
  • H. Hellen, H. Hakola and T. Laurila. Determination of source contributions of NMHCs in Helsinki (60oN, 25oE) using chemical mass balance and the Unmix multivariate receptor models. Atmospheric Environment. 37, 1413–1424, 2003. http://dx.doi.org/ 10.1016/S1352-2310 (02)01049-X.
  • S. Demir, A. Saral, F. Ertürk, S. L., Kuzu, B. İ. Goncaloğlu and G. Demir. Effect of diurnal changes in VOC source strengths on performances of receptor models. Environmental Science and Pollution Research International. 19, 5, 1503-1514, 2011. http://dx.doi.org/ 10.1007/s11356-011-0636-8.
  • I. Schifter, M. Magdaleno, L. Díaz, B. Krüger, J. León, M. E. Palmerín, R. Casas, A. Melgarejo and E. López-Salinas. Contribution of the gasoline distribution cycle to volatile organic compound emissions in the metropolitan area of Mexico City. Journal of the Air & Waste Management Association. 52, 535–541, 2002. http://dx.doi.org/ 10.1080/10473289.2002.10470803.
  • V. A. Lanz, B. Buchmann, C. Hueglin, R. Locher, S. Reimann and J. Staehelin. Factor analytical modeling of C2–C7 hydrocarbon sources at an urban background site in Zurich (Switzerland): changes between 1993–1994 and 2005–2006. Atmospheric Chemistry and Physics. 8, 1, 907-955, 2008. http://dx.doi.org/10.5194 /acpd-8-907-2008.
  • R.J. Yokelson, T.J. Christian, T. G. Karl and A. Guenther. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmospheric Chemistry and Physics. 8, 13, 3509–3527, 2008. https://doi.org/ 10.5194/ acp-8-3509-2008.
  • A. Latella, G. Stani, L. Cobelli, M. Duane, H. Junninen, C. Astorga and B. R. Larsen. Semicontinuous GC analysis and receptor modelling for source apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. Journal of Chromatography. A. 15, 1071, 1-2, 29–39, 2005. https://doi.org/10.1016/j. chroma.2004.12.043.
  • C. H. Lai, K. S. Chen, Y. T. Ho, Y. P. Peng and Y. M. Chou. Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan. Atmospheric Environment. 39, 25, 4543–4559, 2005. https://doi.org/10.1016/j.atmosenv.2005. 03.044.
  • H. Pekey, B. Pekey, D. Arslanbaş, Z. Bozkurt, G. Doğan and G. Tuncel. Source Identification of Volatile Organic Compounds and Particulate Matters in an Urban and Industrial Areas of Turkey. Ekoloji, 24, 94, 1-9, 2015. https://doi.org/10.5053/ekoloji.2015.941.
  • X. Cao, Z. Yao, X. Shen, Y. Ye and X. Jiang. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China. Atmospheric Environment, 124, 146–115, 2015. https://doi.org/10. 1016/j.atmosenv.2015.06.019.
  • Environmental Protection Agency. Integrated Risk Information System (IRIS). Integrated risk information for benzene (monograph on the internet). Washington, DC: U.S. Environmental Protection Agency,2014.
  • L. Zhang, J. Wang, X. Hu, J. Zhou, M. Zhao, J. Zhang, Y. Bo, Y. Huang and Y. Zhang. VOCs and PM concentrations in underground parking garages of the commercial center and high-rise residential buildings. Air Quality Atmosphere & Health. 14, 1117–1131, 2021. https://doi.org/10.1007/s11869-021-01003-z.
  • S. Yurdakul, M. Civan and G., Tuncel. Volatile organic compounds in suburban Ankara atmosphere, Turkey: Sources and variability. Atmospheric Research, 120–121, 298-311, 2013. https://doi.org/10.1016/j.atmosres .2012.09.015.
  • Z. Bozkurt, G. Doğan, D. Arslanbaş, B. Pekey, H. Pekey, Y. Dumanoğlu, A. Bayram and G. Tuncel. Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environmental Monitoring and Assessement. 187, 9, 590, 2015. https://doi.org/10.1007/s10661-015-4816-8.
  • M. A. Zahed, S. Salehi, M. A. Khoei, P. Esmaeili, L. Mohajeri. Risk assessment of Benzene, Toluene, Ethyl benzene, and Xylene (BTEX) in the atmospheric air around the world: A review. Toxicol In Vitro. 12, 98, 105825, 2024. https://doi.org/10.1016/j.tiv.2024.1058 25.
  • National Ambient Air Quality Standards (40 CFR part 50), NAAQS Table, Environmental Protection Agency, 1990.
  • N. Shinohara, Y. Okazaki, A. Mizukoshi and S. Wakamatsu. Exposure to benzene, toluene, ethylbenzene, xylene, formaldehyde, and acetaldehyde in and around gas stations in Japan. Chemosphere. 222, 923–931, 2019. https://doi.org/10.1016/j.chemosphere. 2019.01.166.
  • W. Loonsamrong, N. Taneepanichskul, S. Puangthongthub and T. Tungsaringkarn. Health risk assessment and BTEX exposure among car park workers at a parking structure in Bangkok, Thailand, Journal of Health Research. 29, 4, 285-92, 2015. https://doi.org/10.14456/jhr.2015.12.
  • A. Müezzinoğlu, M. Odabaşı and L. Onat. Volatile organic compounds in the air of Izmir, Turkey. Atmospheric Environment, 35, 753–760, 2001. https:// doi.org/10.1016/S1352-2310(00)00420-9.
  • T. Elbir, B. Cetin, E. Cetin, A. Bayram and M. Odabası. Characterization of Volatile Organic Compounds (VOCs) and Their Sources in the Air of Izmir, Turkey. Environmental Monitoring and Assessment. 133, 149–160, 2007. https://doi.org/10.1007/s10661-006-9568-z.
  • ASTM D3686-20, Standard Practice for Sampling Atmospheres to Collect Organic Compound Vapors (Activated Charcoal Tube Adsorption Method), 2020.
  • DC EPA/600/Z-92/001, Guidelines for Exposure Assessment. U.S. Environmental Protection Agency, Risk Assessment Forum, Washington, 1992.
  • Exposure Factors Handbook: 2011, United States Environmental Protection Agency (EPA), Edition, 600,US, 2011.
  • IARC Monographs on the Identification of Carcinogenic Hazards to Humans – List of Classifications vols. 1 – 123,2019.
  • California OEHHA Lists New Chemicals in Proposition 65 Chemical List, 2019.
  • CEP, U.S. EPA'S Cumulative Exposure Project, 1990.
  • R. Kerbachi, M. Boughedaoui, L. Bounoua and M. Keddam. Ambient air pollution by aromatic hydrocarbons in Algiers. Atmospheric Environment. 40, 21, 3995-4003, 2006. https://doi.org/10.1016/j.atm osenv.2006.02.033.
  • A. P. Soldatos, E. B. Bakeas and P. A. Siskos. Occupational Exposure to BTEX of Workers in Car Parkings and Gasolıne Service Statıons in Athens, Greece. Fresenius Environmental Bulletin, 12, 9,1064-1070, 2003.
  • W.P.L. Carter. Development of ozone reactivity scales for volatile organic compounds. Journal of Air Waste Management Association. 44, 881–899, 1994. https:// doi.org/10.1080/1073161X.1994.10467290.
  • M. A. Parra, L. Gonzalez, D. Elustondo, J. Garrigo, R. Bermejo and J. M. Santamaria. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain. Science of the Total Environment. 370, 157–167, 2006. https://doi.org/10. 1016/j.scitotenv.2006.06.022.
  • I. L. Gee and C. J. Sollars. Ambient air levels of volatile organic compounds in Latin American and Asian cities. Chemosphere, 36, 11, 2497–2506, 1998. https://doi. org/10.1016/S0045-6535(97)10217-X.
  • K. Na, K. C. Moon and Y. P. Kim. Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmospheric Environment, 39,30, 5517–5524, 2005. https://doi.org /10.1016/j.atmosenv.2005.06.005.
  • M. T. Latif, H. H. Abd Hamid, F. Ahamad, M. F. Khan, M. S. M. Nadzir, M. Othman, M. Sahani, M. I. A. Wahab, N. Mohamad and R. Uning. BTEX compositions and its potential health impacts in Malaysia. Chemosphere, 237, 124451, 2019. https:// doi.org/10.1016/j.chemosphere.2019.124451.
  • F. Soleimani, S. Dobaradaran, G. E. De-la-Torre, T. C. Schmidt, and R. Saeedi. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. The Science of the Total Environment, 20, 813, 152667, 2022. https://doi. org/10.1016/j.scitotenv.2021.152667.
  • N. Taneepanichsku, W. Loonsamrong, T. Tungsaringkarn, B. Gelaye and M. A. Williams. Occupational exposure to BTEX compounds among enclosed multi-storey car park workers in central Bangkok area. Indoor and Built Environment, 27, 5, 622-629, 2018. https://doi.org/10.1177/1420326X166 89408.
  • K. Na, Y. P. Kim, I. Moon and K. C. Moon. Chemical composition of VOC major emission sources in the Seoul atmosphere. Chemosphere. 55, 585–594, 2024. https://doi.org/10.1016/j.chemosphere.2004.01.010.
  • Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air, Official Journal of the ECL, 313, 12–21, 2000.
  • B. Barletta, S. Meinardi, I J. Simpson, S. Zou, F. Sherwood Rowland and D. R. Blake. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan. Atmospheric Environment. 42, 4393-4408, 2008. https://doi.org/10. 1016/j.atmosenv.2008.01.028.
  • J. Zhu, R. Newhook, L. Marro and C. C. Chan. Selected volatile organic compounds in residential air in the city of Ottawa, Canada. Environmental Science and Technology. 39, 3964–3971, 2005. https://doi.org/10. 1021/es050173u.
  • A. N. Baghani, R. Rostami, H. Arfaeinia, S. Hazrati, M. Fazlzadeh and M. Delikhoon. BTEX in indoor air of beauty salons: risk assessment, levels and factors influencing their concentrations. Ecotoxicology and Environmental Safety. 159, 102–108, 2018. https://doi. org/10.1016/j.ecoenv.2018.04.044.
  • S. Chaiklieng, P. Suggaravetsiri and H. Autrup. Risk assessment on benzene exposure among gasoline station workers. International Journal of Environmental Research and Public Health. 16, 14, 2545, 2019. https://doi.org/10.3390/ijerph16142545.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Air Pollution Modelling and Control, Air Pollution and Gas Cleaning
Journal Section Articles
Authors

Yetkin Dumanoglu 0000-0003-3381-4425

Aslıhan Irmalı 0009-0002-7330-979X

Early Pub Date March 3, 2025
Publication Date
Submission Date September 3, 2024
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Dumanoglu, Y., & Irmalı, A. (2025). Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1542601
AMA Dumanoglu Y, Irmalı A. Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi. NOHU J. Eng. Sci. March 2025;14(2):1-1. doi:10.28948/ngumuh.1542601
Chicago Dumanoglu, Yetkin, and Aslıhan Irmalı. “Üniversite kampüs girişi uçucu Organik bileşik Seviyeleri Ve Mesleki Maruziyetin Tahmin Edilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 2 (March 2025): 1-1. https://doi.org/10.28948/ngumuh.1542601.
EndNote Dumanoglu Y, Irmalı A (March 1, 2025) Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE Y. Dumanoglu and A. Irmalı, “Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi”, NOHU J. Eng. Sci., vol. 14, no. 2, pp. 1–1, 2025, doi: 10.28948/ngumuh.1542601.
ISNAD Dumanoglu, Yetkin - Irmalı, Aslıhan. “Üniversite kampüs girişi uçucu Organik bileşik Seviyeleri Ve Mesleki Maruziyetin Tahmin Edilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (March 2025), 1-1. https://doi.org/10.28948/ngumuh.1542601.
JAMA Dumanoglu Y, Irmalı A. Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi. NOHU J. Eng. Sci. 2025;14:1–1.
MLA Dumanoglu, Yetkin and Aslıhan Irmalı. “Üniversite kampüs girişi uçucu Organik bileşik Seviyeleri Ve Mesleki Maruziyetin Tahmin Edilmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 2, 2025, pp. 1-1, doi:10.28948/ngumuh.1542601.
Vancouver Dumanoglu Y, Irmalı A. Üniversite kampüs girişi uçucu organik bileşik seviyeleri ve mesleki maruziyetin tahmin edilmesi. NOHU J. Eng. Sci. 2025;14(2):1-.

download