Research Article
BibTex RIS Cite

Aşındırıcı su jeti ile farklı kalınlıklardaki malzemelerin yüzey pürüzlülüğüne etki eden parametrelerin deneysel incelenmesi: Polimer, kompozit ve elastomer malzemeler

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

Çeşitli endüstriyel ürünlerin yüzey kalitesi son kullanıcılar yönünden önem taşımaktadır. Bu nedenle, üretim aşamasında çeşitli parametreler uygulanarak ürün yüzeyinin ilave operasyon uygulamadan uygun değer zaman içinde istenen kalitede elde edilmesi önemli rol oynamaktadır. Bu çalışmada, farklı kalınlıklarda dökme polimada 6 (PA6 G), kompozede (CFRP) ve etilen profilden dine manom er kauçuk(EPDM) malzemelerin aşındırıcı su jetinde (ASJ) farklı ilerleme hızlarında kesilmesi sonrasında malzeme kalınlığına bağlı yüzey kalitesi incelenmesi amaçlanmıştır. Toplam 99 adet kesim işleminin gerçekleştirildiği deneylerde malzeme türünün, kesme hızının ve malzeme kalınlıklarının yüzey kalitesine etkisi incelenmiştir. Polimer, kompozit ve elastomer tabanlı üç farklı malzemenin fiziksel özelliklerine göre belirlenen düşük, orta ve yüksek devirli hızlarda kesilen deney numuneleri, kesme derinliği boyunca farklı üç noktadan yüzey aşınma pürüzlüğü ölçülmüştür. Daha sonra elde dilen sonuçlar malzeme bazında ve kalınlıklarda en uygun kesme hızları karşılaştırılmıştır. Sonuç olarak, kesme hızının yüzey aşınmasının yüzey kalitesi ve farklı kalınlıklarda ve farklı malzeme yüzeylerinde işleme izlerinin varlığı üzerinde önemli bir etkiye sahip olduğu gösterilmiştir.

Thanks

The author would like to thank Prof. Dr. Ahmet DEMİRER, Mrs. Ferhande BEDIR, Mrs. Sema Nur SUEL, Mr. Çağatay YALÇIN and the personnel at Kaya Çelik Sac ve Demir Tic and Noksel Çelik Boru factories for their support in conducting the experiments during this study.

References

  • C. Baykara and E. Atik, The effect of surface roughness and carburized depth on wear resistance in 16MnCr5 case hardening steel. Industrial Lubrication and Tribology, 77 (1), 81-92, 2025. https://doi.org/10.1108/ILT-05-2024-0152
  •    C. Baykara, Effects of single-lap joint at different adhesive thicknesses on fatigue strength of metals with different surface coatings. Proceedings of the Institution Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237 (17), 1-18, 2023.https://doi.org/10.1177/09544062231152995
  •    C. Baykara, I.T. Teke and A.H. Ertaş, Effects of the single-lap joint on fatigue strength of metals with different surface coatings: a numerical simulation. E3S Web of Conferences, 402, 11011, 2023. https://doi.org/10.1051/e3sconf/202340211011
  •    C. Baykara, The effect of adhesive strength on thin-walled metal surfaces coated with cataphoresis application according to adhesive thickness. 7th International Conference on Structural Adhesive Bonding 2023, Lucas F. M. da Silva and Robert D. Adams (eds.). Springer, Porto, pp.27-39. 2024
  •    C. Baykara, Farklı kimyasal yöntemlerle kaplanmış çelik plakaların farklı yapıştırma kalınlıklarda tek bindirmeli birleştirme yöntemiyle birleştirilen numunelerin yorulma analizleri sonuçlarının wöhler eğrilerinde karşılaştırılması. Afyon Kocatepe Üniversitesi Fenve Mühendislik Bilimleri Dergisi, 24 (1), 176-188, 2024. https://doi.org/10.35414/akufemubid.1288047
  •    P. Löchner, J. Krzysztof and P. Niesłony. Investigation of the effect of cutting speed on surface quality in abrasive water jet cutting of 316L stainless steel. Procedia Engineering, 149, 276–282, 2016. https://doi.org/10.1016/j.proeng.2016.06.667
  •    Y. Hu, F. Wang, F. Jiang, L. Hu and G. Huang. Simulation analysis of damage and energy consumption of rocks during abrasive water jet impacts based on SPH-FDEM method. Powder Technology, 449, 120418, 2025. https://doi.org/10.1016/j.powtec.2024.120418
  •    F. Huang, J. Mi, D. Li, R. Wang and Z. Zhao, Comparative investigation of the damage of coal subjected to pure water jets, ice abrasive water jets and conventional abrasive water jets, Powder Technology, 394, 909–925, 2021. https://doi.org/10.1016/j.powtec.2021.08.79
  •    M. Dua, K. Zhanga, Y. Liub, L. Fenga and C. Fana, Experimental and simulation study on the influence factorsof abrasive water jet machining ductile materials. Energy Reports, 8, 11840-11857, 2022. https://doi.org/10.1016/j.egyr.2022.09.035
  • Y. Natarajan, P.K. Murugesan, M. Mohan, and S. A. Y. A. Khan, Abrasive water jet machining process: a state of art of review. Journal of Manufacturing Processes, 49, 271–322, 2020. https://doi.org/10.1016/j.jmapro.2019.11.030
  • A. Ibrahim and M. Papini, Controlled depth micro-abrasive waterjet milling of aluminum oxide to fabricate micro-molds containing intersecting free-standing structures. Precision Engineering, 75, 24–36, 2022. https://doi.org/10.1016/j.precisioneng.2022.01.007
  • A. Nouhi, J. K. Spelt and M. Papini, Abrasive jet turning of glass and PMMA rods and the micro-machining of helical channels. Precision Engineering, 53, 151–62, 2018. https://doi.org/10.1016/j.precisioneng.2018.03.010
  • F.C. Campbell, Light Weight Materials: Understanding Basics. ASM International, Cleveland, 2012.
  • J. Zhang, C. Han and Z. Liang, Physics of failure analysis of power section assembly for positive displacement motor, Journal of Loss Prevention in the Process Industries, 44, 414-423, 2016. https://doi.org/10.1016/j.jlp.2016.10.020
  • C. Shi, X. Wan, X. Zhu and K. Chen, A study on mechanical properties of equal wall thickness rubber bushing of positive displacement motor based on hydroge- nated nitrile butadiene rubber ageing test, Petroleum, 8 (3), 403-413, 2021. https://doi.org/10.1016/j.petlm.2021.04.008
  • D. Begic-Hajdarevic, A. Cekic, M. Mehmedovic and A. Djelmic, Experimental study on surface roughness in abrasive water jet cutting. Procedia Engineering, 100, 394–399, 2015. https://doi.org/10.1016/j.proeng.2015.01.383
  • Z. Ćojbašić, D. Petković, S. Shamshirband. C.W. Tong, Ch, Sudheer, P. Janković, D. Predrag, B. Nedeljko and J. Baralić. Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precision Engineering, 43, 86-92, 2015. https://doi.org/10.1016/j.precisioneng.2015.06.013
  • K. C. Lee, S. J. Ho and S. Y. Ho, Accurate estimation of surface roughness from texture features of the surface image using an adaptive neuro-fuzzy inference system. Precision Engineering, 29, 95–100, 2005. https://doi.org/10.1016/j.precisioneng.2004.05.002
  • A. Akkurt, M. K. Kulekci, U. Seker and F. Ercan, Effect of feed rate on surface rough- ness in abrasive water jet cutting applications. Jorunal of Materials Processing Technology, 147, 389–396, 2004. https://doi.org/10.1016/j.jmatprotec.2004.01.013
  • R. M. Manohar, CO2 laser beam cutting of steels: Material issues. Journal of Lasers Applications, 18, 101-12, 2006. https://doi.org/10.2351/1.2193173
  • J. Foldyna, L. Sitek, B. Švehla, and Š. Švehla, Utilization of ultrasound to enhance high-speed water jet effects. Ultrasonics Sonochemistry, 11 (3-4), 131-137. 2004. https://doi.org/10.1016/j.ultsonch.2004.01.008
  • D. Krajcarz, Comparison metal water jet cutting with laser and plasma cutting, Procedia Engineering, 69, 838–843, 2014. https://doi.org/10.1016/j.proeng.2014.03.061.
  • F. Kartal and A. Kaptan. Artificial neural network and multiple regression analysis for predicting abrasive water jet cutting of Al 7068 aerospace alloy. Sigma Journal of Engineering Natural Sciences, 42 (2), 516−528, 2024 https://doi.org/10.14744/sigma.2023.00102
  • M. Ficko, D. Begic-Hajdarevic, H.M. Cohodar, L. Berus, A. Cekic and S. Klancnik, Prediction of surface roughness of an abrasive water jet cut using an artificial neural network, Materials, 14 (11), 3108, 2021. https://doi.org/10.3390/ma14113108
  • M. Zelenˇa´k, J. Valícek, J. Klich and P. Zˇidkova´, Comparison of surface roughness quality created by abrasive water jet and CO2 laser beam cutting, Tehnicki Vjesnik, 19 (3), 481–485, 2011.
  • M. S. Alsoufi, D. K. Suker, A. S. Alsabban and S. Azam, Experimental study of surface roughness and micro-hardness obtained by cutting carbon steel with abrasive waterjet and laser beam technologies, American Journal of Mechanical Engineering, 4 (5), 173–181, 2016.https://doi.org/10.12691/ajme-4-5-2
  • V. Perzel, S. Hloch, H. Tozan, M. Yagimli and P. Hreha, Comparative analysis of abrasive waterjet (AWJ) technology with selected unconventional manufacturing processes. International Journal of Physical Sciences, 6 (24), 5587–5593, 2011. https://doi.org/10.5897/IJPS11460
  • E. Dogankaya, M. Kahya and H. Özgür Ünver, H. Abrasive water jet machining of UHMWPE and trade-off optimization. Materials and Manufacturing Processes, 35(12), 1339–1351, 2020. https://doi.org/10.1080/10426914.2020.1772486
  • M. Kahya E. Doğankaya O. Çaylan Z.G. Büke and H.O. Ünver, Secondary processing of aramid with AWJ and optimization with NSGA-III. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236 (5), 2164-2175, 2022. https://doi.org/10.1177/09544089221085325
  • F. Kartal and A. Kaptan, Experimental Determination Of The Optimum Cutting Tool For Cnc Milling Of 3D Printed Pla Parts. International Journal of 3D Printing Technologies and Digital Industry, 7 (2), 150-160, 2023. https://doi.org/10.46519/ij3dptdi.1247636
  • GMA Garnet Pty Ltd. https://gmagarnet.com/en/americas/waterjet-garnet, Accessed 08 January 2025
  • K. Kowsari, J. Schwartzentruber, J.K. Spelt and M. Papini, Erosive smoothing of abrasive slurry-jet micro-machined channels in glass, PMMA, and sintered ceramics: experiments and roughness model. Precision Engineering, 49, 332-343, 2017. https://doi.org/10.1016/j.precisioneng.2017.03.003
  • P. Maurya, G.S. Vijay, K.C Raghavendra and B. Shivamurthy, Cryogenic machining of elastomers: a review. Machining Science and Technology 25 (3), 477-525, 2021. https://doi.org/10.1080/10910344.2021.1903923
  • Y. Hu, Y. Kang, X.C. Wang, X.H. Li, X.P. Long, G.Y. Zhai and M. Huang, Mechanism and experimental investigation of ultra-high-pressure water jet on rubber cutting. International Journal of Precision Engineering and Manufacturing, 15, 1973-1978, 2014. https://doi.org/10.1007/s12541-014-0553-0
  • N. Çakmak and Y. E. Engin, Synthesis and characterization of ethylene propylene diene monomer (EPDM) Rubber Mixture. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8 (2), 1299-1306, 2019. https://doi.org/10.28948/ngumuh.479347
  • M. Li, X. Lin, X. Yang, H. Wu and X. Meng, Study on kerf characteristics and surface integrity based on physical energy model during abrasive waterjet cutting of thick CFRP laminates. The International Journal of Advanced Manufacturing Technology, 113, 73-85, 2021.https://doi.org/10.1007/s00170-021-06590-w
  • S. T. Kumaran, T. J. Ko, M. Uthayakumar and M. M. Islam, Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. Journal of Alloys and Compounds, 724, 1037-1045, 2017. https://doi.org/10.1016/j.jallcom.2017.07.18
  • S. Madhu and M. Balasubramanian, Challenges in abrasive jet machining of fibre-reinforced polymeric composites - a review. World Journal of Engineering, 18 (2), 251-268, 2020. https://doi.org/10.1108/wje-05-2020-0190
  • M. M. Irina Wong, A. I. Azmi, C. C. Lee and A. F. Mansor, Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 94, 1727-1744, 2018. https://doi.org/10.1007/s00170-016-9669-y
  • X. Shenglei, W. Peng, G. Hang and S. Damien, A study of abrasive waterjet multi- pass cutting on kerf quality of carbon fibre-reinforced plastics. The International Journal of Advanced Manufacturing Technology, 105, 4527-4537, 2019. https://doi.org/10.1007/s00170-01-83177-1
  • G. Anand, S.V. Perumal, N. Yuvaraj and K. Palanikumar, Influence of abrasive water jet machining parameters on hybrid polymer composite. Journal of the Institution Engineers (India): Series C, 102 (3), 713-722, 2021. https://doi.org/10.1007/s40032-021-00672-0
  • B. Karacor, and M. Özcanlı, The effect of use of different types of matrix material on mechanical characteristics in jute/carbon fiber reinforced hybrid composites. Nigde Omer Halisdemir University Journal of Engineering Sciences, 11 (2), 439-448, 2022. https://doi.org/10.28948/ngumuh.1080540
  • E.F. Şükür. Dry sliding friction and wear properties of CACO3 nanoparticle filled epoxy/carbon fiber composites. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9 (2), 1108-1117, 2020. https://doi.org/10.28948/ngumuh.725631
  • H. Takeyama and N. Lijima, Machinability of glassfiber reinforced plastics and application of ultrasonic machining. CIRP Annals, 37, 93–96, 1988. https://doi.org/10.17951/pjss/2017.50.2.155
  • K. Weinert and C. Kempmann, Cutting temperatures and their effects on the machining behaviour in drilling reinforced plastic composites. Advanced Engineering Materials, 6, 684–689, 2004. https://doi.org/10.1002/adem.200400025
  • W. König and P. Grass, Quality definition and assessment in drilling of fibre reinforced thermosets. CIRP Annals, 38, 119–124, 1989. https://doi.org/10.1016/S0007-8506(07)62665-1
  • W. C. Chen, Some experimental investigations in the drilling of carbon fiber- reinforced plastic (CFRP) composite laminates. International Journal of Machine Tools and Manufacture, 37, 1097–1108, 1997. https://doi.org/10.1016/S0890-6955(96)00095-8
  • J. Kechagias, G. Petropoulos, V. Iakovakis and S. Maropoulos, An investigation of surface texture parameters during turning of a reinforced polymer composite using design of experiments and analysis. International Journal of Experimental Design and Process Optimisation, 1 (2-3), 164-167, 2009. https://doi.org/10.1504/ijedpo.2009.030317
  • L. M. Hlavácˇ, I. M. Hlavácˇová, L. Gembalová, J. Kalicˇinsky´, S. Fabian, J. Meˇštˇánek, J. Kmec and V. Mádr, Experimental method for the investigation of the abrasive water jet cutting quality. Journal of Materials Processing Technology, 209, 6190–6195, 2009. https://doi.org/10.1016/j.jmatprotec.2009.04.011
  • C. Ma and R. T. Deam, A correlation for predicting the kerf profile from abrasive water jet cutting. Experimental Thermal and Fluid Science, 30, 337–343, 2006. https://doi.org/10.1016/j.expthermflusci.2005.08.003
  • F. Kartal, M. H. Çetin, H. Gökkaya and Z. Yerlikaya, Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method. International Polymer Processing, 29, 535–544, 2014. https://doi.org/10.3139/217.2925
  • F. Kartal and Z. Yerlikaya, Investigation of surface roughness and MRR for engineering polymers with the abrasive water jet turning process. International Polymer Processing, 31, 336–345, 2016. https://doi.org/10.3139/217.3185
  • D. K. Kalla, B. Zhang, R. Asmatulu and P. S. Dhanasekaran, Current research trends in abrasive waterjet machining of fiber reinforced composites. Material Science Forum, 713, 37–42, 2012.https://doi.org/10.4028/www.scientific.net/MSF.713.37
  • A. Radvanská, T. Ergic´, Zˇ. Ivandic´, S. Hloch, J. Valicek and J. Mullerova, Technical possibilities of noise reduction in material cutting by abrasive water-jet. Strojarstvo, 51, 347–354, 2009.
  • F. Mindivan, Poliamid 6/Grafen nano tabakalı (PA6/GNP) kompozitlerin termo-mekanik özelliklerinin karekterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (1), 443-450. 2018. https://doi.org/10.28948/ngumuh.368631
  • M. Takaffoli and M. Papini, Finite element analysis of single impacts of angular particles on ductile targets, Wear, 267, 144–151, 2009. https://doi.org/10.1016/j.wear.2008.10.004
  • M. Bagheri, M. Masoud and M. Riazi, A review of smoothed particle hydrodynamics, Computational Particle Mechanics, 11(3), 1163-1219, 2023. https://doi.org/10.1007/s40571-023-00679-7
  • Z. Mao, G.R. Liu and X. Dong. A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. Computers and Geotechnics, 92, 77-95, 2017. https://doi.org/10.1016/j.compgeo.2017.07.024
  • G.R. Liu and M.B. Liu, Smoothed particle hydrodynamics: a mesh- free particle method. World Scientific, Singapore, 2003.
  • M. Takaffoli and M. Papini. Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics. Wear, 274-275, 50–59, 2012. https://doi.org/10.1016/j.wear.2011.08.012
  • TechPlasty data sheet. https://www.techplasty.com/node/232/pdf, Accessed 08 January 2025
  • Mega Polimer. https://megapolimer.com/dokum-polyamid-pa6g/, Accessed 03 November 2024
  • Hakan Metal. https://www.hakanmetal.com.tr/urunler/pa-6-g-dokum-polyamid-kestamit, Accessed 03 November 2024.
  • Aydınlar Makine-Metal San. Ve Tic. Ltd. Şti. https://aydinlarmakinametal.com.tr/urunler/muhendislik-plastikleri/cast-polyamid-pa6-g/, Accessed 03 November 2024.
  • S. Satheeskumar and G. Kanagaraj. Experimental investigation on tribological behaviours of PA6, PA6-reinforced Al2O3and PA6-reinforced graphite polymer composites. Bulletin of Materials Science, 39(6), 1467–1481, 2016. https://doi.org/10.1007/s12034-016-1296-6
  • A. Kausar and R. Taherian. Electrical Conductivity in Polymer Composite Filled With Carbon Microfillers. Electrical Conductivity in Polymer-Based Composites. William Andrew, Norwich, pp.41-72, 2019.
  • Avdeso drone. https://avdesodrone.com/karbon-fiber-nedir-havaciliktaki-onemi-nelerdir/, Accessed 03 November 2024.
  • Morgan, P. Carbon Fiber and Their Composites, CRC Press, Boca Raton, 2005.
  • S. M. Saufi and A. F. Ismail, Development and characterization of polyacrylonitrile (PAN) based carbon hallow fiber membrane, Songklanakarin Journal of Science and Technology, 24, 843-854, 2002.
  • J. Parameswaranpillai, C. D. Midhun Dominic, S. Mavinkere Rangappa, S. Siengchin and T. Ozbakkaloglu, Introduction to Elastombers, Elastomer Blends and Composites, pp.1-9, 2022.
  • P. Jagadeesh, S. Mavinkere Rangappa, S. Siengchin, M. Puttegowda, S.M.K. Thiagamani, G. Rajeshkumar, M. Hemath Kumar, O.P. Oladijo, V. Fiore and M. Moure Cuadrado, Sustainable recycling technologies for thermoplastic polymers and their composites: a review of the state of the art. Polymer Composites, 43 (9), 5831-5862, 2022. https://doi.org/10.1002/pc.27000
  • J. Karger-Kocsis, A. Mousa, Z. Major and N. Békési. Dry friction and sliding wear of EPDM rubbers against steel as a function of carbon black content. Wear, 264 (3-4), 359–367, 2008. https://doi.org/10.1016/j.wear.2007.03.021
  • B. Zirnstein, D. Schulze and B. Schartel, Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials, 12 (12), 1932, 2019. https://doi.org/10.3390/ma12121932
  • Kuhmichel abrassive GmbH. Technique data sheet. https://www.kuhmichel.com/en/products/garnet-sand/, Accessed 10 January 2025.

Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

The surface quality of various industrial products is important for end users. For this reason, it plays an important role to obtain the desired quality of the product surface in optimum time without additional operation by applying various parameters during the production phase. In this study, it was aimed to investigate the surface quality of cast polyamide 6 (PA6 G), composite (CFRP) and ethylene propylene diene manomer rubber (EPDM) materials of different thicknesses after cutting at different feed rates in abrasive water jet (AWJ). In the experiments where a total of 99 cutting operations were carried out, the effect of material type, cutting speed and material thickness on surface quality was analysed. The test specimens were cut at low, medium and high speeds determined according to the physical properties of three different polymer, composite and elastomer based materials and the surface wear roughness was measured at three different points along the depth of cut. The results obtained were then compared with the optimum cutting speeds for different materials and thicknesses. As a result, it has been shown that the cutting speed has a significant effect on the surface quality of the surface wear and the presence of machining marks on different thicknesses and different material surfaces.

Thanks

The author would like to thank Prof. Dr. Ahmet DEMİRER, Mrs. Ferhande BEDIR, Mrs. Sema Nur SUEL, Mr. Çağatay YALÇIN and the personnel at Kaya Çelik Sac ve Demir Tic and Noksel Çelik Boru factories for their support in conducting the experiments during this study.

References

  • C. Baykara and E. Atik, The effect of surface roughness and carburized depth on wear resistance in 16MnCr5 case hardening steel. Industrial Lubrication and Tribology, 77 (1), 81-92, 2025. https://doi.org/10.1108/ILT-05-2024-0152
  •    C. Baykara, Effects of single-lap joint at different adhesive thicknesses on fatigue strength of metals with different surface coatings. Proceedings of the Institution Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237 (17), 1-18, 2023.https://doi.org/10.1177/09544062231152995
  •    C. Baykara, I.T. Teke and A.H. Ertaş, Effects of the single-lap joint on fatigue strength of metals with different surface coatings: a numerical simulation. E3S Web of Conferences, 402, 11011, 2023. https://doi.org/10.1051/e3sconf/202340211011
  •    C. Baykara, The effect of adhesive strength on thin-walled metal surfaces coated with cataphoresis application according to adhesive thickness. 7th International Conference on Structural Adhesive Bonding 2023, Lucas F. M. da Silva and Robert D. Adams (eds.). Springer, Porto, pp.27-39. 2024
  •    C. Baykara, Farklı kimyasal yöntemlerle kaplanmış çelik plakaların farklı yapıştırma kalınlıklarda tek bindirmeli birleştirme yöntemiyle birleştirilen numunelerin yorulma analizleri sonuçlarının wöhler eğrilerinde karşılaştırılması. Afyon Kocatepe Üniversitesi Fenve Mühendislik Bilimleri Dergisi, 24 (1), 176-188, 2024. https://doi.org/10.35414/akufemubid.1288047
  •    P. Löchner, J. Krzysztof and P. Niesłony. Investigation of the effect of cutting speed on surface quality in abrasive water jet cutting of 316L stainless steel. Procedia Engineering, 149, 276–282, 2016. https://doi.org/10.1016/j.proeng.2016.06.667
  •    Y. Hu, F. Wang, F. Jiang, L. Hu and G. Huang. Simulation analysis of damage and energy consumption of rocks during abrasive water jet impacts based on SPH-FDEM method. Powder Technology, 449, 120418, 2025. https://doi.org/10.1016/j.powtec.2024.120418
  •    F. Huang, J. Mi, D. Li, R. Wang and Z. Zhao, Comparative investigation of the damage of coal subjected to pure water jets, ice abrasive water jets and conventional abrasive water jets, Powder Technology, 394, 909–925, 2021. https://doi.org/10.1016/j.powtec.2021.08.79
  •    M. Dua, K. Zhanga, Y. Liub, L. Fenga and C. Fana, Experimental and simulation study on the influence factorsof abrasive water jet machining ductile materials. Energy Reports, 8, 11840-11857, 2022. https://doi.org/10.1016/j.egyr.2022.09.035
  • Y. Natarajan, P.K. Murugesan, M. Mohan, and S. A. Y. A. Khan, Abrasive water jet machining process: a state of art of review. Journal of Manufacturing Processes, 49, 271–322, 2020. https://doi.org/10.1016/j.jmapro.2019.11.030
  • A. Ibrahim and M. Papini, Controlled depth micro-abrasive waterjet milling of aluminum oxide to fabricate micro-molds containing intersecting free-standing structures. Precision Engineering, 75, 24–36, 2022. https://doi.org/10.1016/j.precisioneng.2022.01.007
  • A. Nouhi, J. K. Spelt and M. Papini, Abrasive jet turning of glass and PMMA rods and the micro-machining of helical channels. Precision Engineering, 53, 151–62, 2018. https://doi.org/10.1016/j.precisioneng.2018.03.010
  • F.C. Campbell, Light Weight Materials: Understanding Basics. ASM International, Cleveland, 2012.
  • J. Zhang, C. Han and Z. Liang, Physics of failure analysis of power section assembly for positive displacement motor, Journal of Loss Prevention in the Process Industries, 44, 414-423, 2016. https://doi.org/10.1016/j.jlp.2016.10.020
  • C. Shi, X. Wan, X. Zhu and K. Chen, A study on mechanical properties of equal wall thickness rubber bushing of positive displacement motor based on hydroge- nated nitrile butadiene rubber ageing test, Petroleum, 8 (3), 403-413, 2021. https://doi.org/10.1016/j.petlm.2021.04.008
  • D. Begic-Hajdarevic, A. Cekic, M. Mehmedovic and A. Djelmic, Experimental study on surface roughness in abrasive water jet cutting. Procedia Engineering, 100, 394–399, 2015. https://doi.org/10.1016/j.proeng.2015.01.383
  • Z. Ćojbašić, D. Petković, S. Shamshirband. C.W. Tong, Ch, Sudheer, P. Janković, D. Predrag, B. Nedeljko and J. Baralić. Surface roughness prediction by extreme learning machine constructed with abrasive water jet. Precision Engineering, 43, 86-92, 2015. https://doi.org/10.1016/j.precisioneng.2015.06.013
  • K. C. Lee, S. J. Ho and S. Y. Ho, Accurate estimation of surface roughness from texture features of the surface image using an adaptive neuro-fuzzy inference system. Precision Engineering, 29, 95–100, 2005. https://doi.org/10.1016/j.precisioneng.2004.05.002
  • A. Akkurt, M. K. Kulekci, U. Seker and F. Ercan, Effect of feed rate on surface rough- ness in abrasive water jet cutting applications. Jorunal of Materials Processing Technology, 147, 389–396, 2004. https://doi.org/10.1016/j.jmatprotec.2004.01.013
  • R. M. Manohar, CO2 laser beam cutting of steels: Material issues. Journal of Lasers Applications, 18, 101-12, 2006. https://doi.org/10.2351/1.2193173
  • J. Foldyna, L. Sitek, B. Švehla, and Š. Švehla, Utilization of ultrasound to enhance high-speed water jet effects. Ultrasonics Sonochemistry, 11 (3-4), 131-137. 2004. https://doi.org/10.1016/j.ultsonch.2004.01.008
  • D. Krajcarz, Comparison metal water jet cutting with laser and plasma cutting, Procedia Engineering, 69, 838–843, 2014. https://doi.org/10.1016/j.proeng.2014.03.061.
  • F. Kartal and A. Kaptan. Artificial neural network and multiple regression analysis for predicting abrasive water jet cutting of Al 7068 aerospace alloy. Sigma Journal of Engineering Natural Sciences, 42 (2), 516−528, 2024 https://doi.org/10.14744/sigma.2023.00102
  • M. Ficko, D. Begic-Hajdarevic, H.M. Cohodar, L. Berus, A. Cekic and S. Klancnik, Prediction of surface roughness of an abrasive water jet cut using an artificial neural network, Materials, 14 (11), 3108, 2021. https://doi.org/10.3390/ma14113108
  • M. Zelenˇa´k, J. Valícek, J. Klich and P. Zˇidkova´, Comparison of surface roughness quality created by abrasive water jet and CO2 laser beam cutting, Tehnicki Vjesnik, 19 (3), 481–485, 2011.
  • M. S. Alsoufi, D. K. Suker, A. S. Alsabban and S. Azam, Experimental study of surface roughness and micro-hardness obtained by cutting carbon steel with abrasive waterjet and laser beam technologies, American Journal of Mechanical Engineering, 4 (5), 173–181, 2016.https://doi.org/10.12691/ajme-4-5-2
  • V. Perzel, S. Hloch, H. Tozan, M. Yagimli and P. Hreha, Comparative analysis of abrasive waterjet (AWJ) technology with selected unconventional manufacturing processes. International Journal of Physical Sciences, 6 (24), 5587–5593, 2011. https://doi.org/10.5897/IJPS11460
  • E. Dogankaya, M. Kahya and H. Özgür Ünver, H. Abrasive water jet machining of UHMWPE and trade-off optimization. Materials and Manufacturing Processes, 35(12), 1339–1351, 2020. https://doi.org/10.1080/10426914.2020.1772486
  • M. Kahya E. Doğankaya O. Çaylan Z.G. Büke and H.O. Ünver, Secondary processing of aramid with AWJ and optimization with NSGA-III. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236 (5), 2164-2175, 2022. https://doi.org/10.1177/09544089221085325
  • F. Kartal and A. Kaptan, Experimental Determination Of The Optimum Cutting Tool For Cnc Milling Of 3D Printed Pla Parts. International Journal of 3D Printing Technologies and Digital Industry, 7 (2), 150-160, 2023. https://doi.org/10.46519/ij3dptdi.1247636
  • GMA Garnet Pty Ltd. https://gmagarnet.com/en/americas/waterjet-garnet, Accessed 08 January 2025
  • K. Kowsari, J. Schwartzentruber, J.K. Spelt and M. Papini, Erosive smoothing of abrasive slurry-jet micro-machined channels in glass, PMMA, and sintered ceramics: experiments and roughness model. Precision Engineering, 49, 332-343, 2017. https://doi.org/10.1016/j.precisioneng.2017.03.003
  • P. Maurya, G.S. Vijay, K.C Raghavendra and B. Shivamurthy, Cryogenic machining of elastomers: a review. Machining Science and Technology 25 (3), 477-525, 2021. https://doi.org/10.1080/10910344.2021.1903923
  • Y. Hu, Y. Kang, X.C. Wang, X.H. Li, X.P. Long, G.Y. Zhai and M. Huang, Mechanism and experimental investigation of ultra-high-pressure water jet on rubber cutting. International Journal of Precision Engineering and Manufacturing, 15, 1973-1978, 2014. https://doi.org/10.1007/s12541-014-0553-0
  • N. Çakmak and Y. E. Engin, Synthesis and characterization of ethylene propylene diene monomer (EPDM) Rubber Mixture. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8 (2), 1299-1306, 2019. https://doi.org/10.28948/ngumuh.479347
  • M. Li, X. Lin, X. Yang, H. Wu and X. Meng, Study on kerf characteristics and surface integrity based on physical energy model during abrasive waterjet cutting of thick CFRP laminates. The International Journal of Advanced Manufacturing Technology, 113, 73-85, 2021.https://doi.org/10.1007/s00170-021-06590-w
  • S. T. Kumaran, T. J. Ko, M. Uthayakumar and M. M. Islam, Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis. Journal of Alloys and Compounds, 724, 1037-1045, 2017. https://doi.org/10.1016/j.jallcom.2017.07.18
  • S. Madhu and M. Balasubramanian, Challenges in abrasive jet machining of fibre-reinforced polymeric composites - a review. World Journal of Engineering, 18 (2), 251-268, 2020. https://doi.org/10.1108/wje-05-2020-0190
  • M. M. Irina Wong, A. I. Azmi, C. C. Lee and A. F. Mansor, Kerf taper and delamination damage minimization of FRP hybrid composites under abrasive waterjet machining. The International Journal of Advanced Manufacturing Technology, 94, 1727-1744, 2018. https://doi.org/10.1007/s00170-016-9669-y
  • X. Shenglei, W. Peng, G. Hang and S. Damien, A study of abrasive waterjet multi- pass cutting on kerf quality of carbon fibre-reinforced plastics. The International Journal of Advanced Manufacturing Technology, 105, 4527-4537, 2019. https://doi.org/10.1007/s00170-01-83177-1
  • G. Anand, S.V. Perumal, N. Yuvaraj and K. Palanikumar, Influence of abrasive water jet machining parameters on hybrid polymer composite. Journal of the Institution Engineers (India): Series C, 102 (3), 713-722, 2021. https://doi.org/10.1007/s40032-021-00672-0
  • B. Karacor, and M. Özcanlı, The effect of use of different types of matrix material on mechanical characteristics in jute/carbon fiber reinforced hybrid composites. Nigde Omer Halisdemir University Journal of Engineering Sciences, 11 (2), 439-448, 2022. https://doi.org/10.28948/ngumuh.1080540
  • E.F. Şükür. Dry sliding friction and wear properties of CACO3 nanoparticle filled epoxy/carbon fiber composites. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9 (2), 1108-1117, 2020. https://doi.org/10.28948/ngumuh.725631
  • H. Takeyama and N. Lijima, Machinability of glassfiber reinforced plastics and application of ultrasonic machining. CIRP Annals, 37, 93–96, 1988. https://doi.org/10.17951/pjss/2017.50.2.155
  • K. Weinert and C. Kempmann, Cutting temperatures and their effects on the machining behaviour in drilling reinforced plastic composites. Advanced Engineering Materials, 6, 684–689, 2004. https://doi.org/10.1002/adem.200400025
  • W. König and P. Grass, Quality definition and assessment in drilling of fibre reinforced thermosets. CIRP Annals, 38, 119–124, 1989. https://doi.org/10.1016/S0007-8506(07)62665-1
  • W. C. Chen, Some experimental investigations in the drilling of carbon fiber- reinforced plastic (CFRP) composite laminates. International Journal of Machine Tools and Manufacture, 37, 1097–1108, 1997. https://doi.org/10.1016/S0890-6955(96)00095-8
  • J. Kechagias, G. Petropoulos, V. Iakovakis and S. Maropoulos, An investigation of surface texture parameters during turning of a reinforced polymer composite using design of experiments and analysis. International Journal of Experimental Design and Process Optimisation, 1 (2-3), 164-167, 2009. https://doi.org/10.1504/ijedpo.2009.030317
  • L. M. Hlavácˇ, I. M. Hlavácˇová, L. Gembalová, J. Kalicˇinsky´, S. Fabian, J. Meˇštˇánek, J. Kmec and V. Mádr, Experimental method for the investigation of the abrasive water jet cutting quality. Journal of Materials Processing Technology, 209, 6190–6195, 2009. https://doi.org/10.1016/j.jmatprotec.2009.04.011
  • C. Ma and R. T. Deam, A correlation for predicting the kerf profile from abrasive water jet cutting. Experimental Thermal and Fluid Science, 30, 337–343, 2006. https://doi.org/10.1016/j.expthermflusci.2005.08.003
  • F. Kartal, M. H. Çetin, H. Gökkaya and Z. Yerlikaya, Optimization of abrasive water jet turning parameters for machining of low density polyethylene material based on experimental design method. International Polymer Processing, 29, 535–544, 2014. https://doi.org/10.3139/217.2925
  • F. Kartal and Z. Yerlikaya, Investigation of surface roughness and MRR for engineering polymers with the abrasive water jet turning process. International Polymer Processing, 31, 336–345, 2016. https://doi.org/10.3139/217.3185
  • D. K. Kalla, B. Zhang, R. Asmatulu and P. S. Dhanasekaran, Current research trends in abrasive waterjet machining of fiber reinforced composites. Material Science Forum, 713, 37–42, 2012.https://doi.org/10.4028/www.scientific.net/MSF.713.37
  • A. Radvanská, T. Ergic´, Zˇ. Ivandic´, S. Hloch, J. Valicek and J. Mullerova, Technical possibilities of noise reduction in material cutting by abrasive water-jet. Strojarstvo, 51, 347–354, 2009.
  • F. Mindivan, Poliamid 6/Grafen nano tabakalı (PA6/GNP) kompozitlerin termo-mekanik özelliklerinin karekterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7 (1), 443-450. 2018. https://doi.org/10.28948/ngumuh.368631
  • M. Takaffoli and M. Papini, Finite element analysis of single impacts of angular particles on ductile targets, Wear, 267, 144–151, 2009. https://doi.org/10.1016/j.wear.2008.10.004
  • M. Bagheri, M. Masoud and M. Riazi, A review of smoothed particle hydrodynamics, Computational Particle Mechanics, 11(3), 1163-1219, 2023. https://doi.org/10.1007/s40571-023-00679-7
  • Z. Mao, G.R. Liu and X. Dong. A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. Computers and Geotechnics, 92, 77-95, 2017. https://doi.org/10.1016/j.compgeo.2017.07.024
  • G.R. Liu and M.B. Liu, Smoothed particle hydrodynamics: a mesh- free particle method. World Scientific, Singapore, 2003.
  • M. Takaffoli and M. Papini. Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics. Wear, 274-275, 50–59, 2012. https://doi.org/10.1016/j.wear.2011.08.012
  • TechPlasty data sheet. https://www.techplasty.com/node/232/pdf, Accessed 08 January 2025
  • Mega Polimer. https://megapolimer.com/dokum-polyamid-pa6g/, Accessed 03 November 2024
  • Hakan Metal. https://www.hakanmetal.com.tr/urunler/pa-6-g-dokum-polyamid-kestamit, Accessed 03 November 2024.
  • Aydınlar Makine-Metal San. Ve Tic. Ltd. Şti. https://aydinlarmakinametal.com.tr/urunler/muhendislik-plastikleri/cast-polyamid-pa6-g/, Accessed 03 November 2024.
  • S. Satheeskumar and G. Kanagaraj. Experimental investigation on tribological behaviours of PA6, PA6-reinforced Al2O3and PA6-reinforced graphite polymer composites. Bulletin of Materials Science, 39(6), 1467–1481, 2016. https://doi.org/10.1007/s12034-016-1296-6
  • A. Kausar and R. Taherian. Electrical Conductivity in Polymer Composite Filled With Carbon Microfillers. Electrical Conductivity in Polymer-Based Composites. William Andrew, Norwich, pp.41-72, 2019.
  • Avdeso drone. https://avdesodrone.com/karbon-fiber-nedir-havaciliktaki-onemi-nelerdir/, Accessed 03 November 2024.
  • Morgan, P. Carbon Fiber and Their Composites, CRC Press, Boca Raton, 2005.
  • S. M. Saufi and A. F. Ismail, Development and characterization of polyacrylonitrile (PAN) based carbon hallow fiber membrane, Songklanakarin Journal of Science and Technology, 24, 843-854, 2002.
  • J. Parameswaranpillai, C. D. Midhun Dominic, S. Mavinkere Rangappa, S. Siengchin and T. Ozbakkaloglu, Introduction to Elastombers, Elastomer Blends and Composites, pp.1-9, 2022.
  • P. Jagadeesh, S. Mavinkere Rangappa, S. Siengchin, M. Puttegowda, S.M.K. Thiagamani, G. Rajeshkumar, M. Hemath Kumar, O.P. Oladijo, V. Fiore and M. Moure Cuadrado, Sustainable recycling technologies for thermoplastic polymers and their composites: a review of the state of the art. Polymer Composites, 43 (9), 5831-5862, 2022. https://doi.org/10.1002/pc.27000
  • J. Karger-Kocsis, A. Mousa, Z. Major and N. Békési. Dry friction and sliding wear of EPDM rubbers against steel as a function of carbon black content. Wear, 264 (3-4), 359–367, 2008. https://doi.org/10.1016/j.wear.2007.03.021
  • B. Zirnstein, D. Schulze and B. Schartel, Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline. Materials, 12 (12), 1932, 2019. https://doi.org/10.3390/ma12121932
  • Kuhmichel abrassive GmbH. Technique data sheet. https://www.kuhmichel.com/en/products/garnet-sand/, Accessed 10 January 2025.
There are 74 citations in total.

Details

Primary Language English
Subjects Tribology
Journal Section Articles
Authors

Celalettin Baykara 0000-0003-3403-6020

Early Pub Date March 3, 2025
Publication Date
Submission Date December 1, 2024
Acceptance Date January 18, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Baykara, C. (2025). Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1594355
AMA Baykara C. Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials. NOHU J. Eng. Sci. March 2025;14(2):1-1. doi:10.28948/ngumuh.1594355
Chicago Baykara, Celalettin. “Experimental Investigation of the Parameters Affecting the Surface Roughness of Materials With Different Thicknesses by Abrasive Water Jetting: Polymer, Composite and Elastomer Materials”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 2 (March 2025): 1-1. https://doi.org/10.28948/ngumuh.1594355.
EndNote Baykara C (March 1, 2025) Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE C. Baykara, “Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials”, NOHU J. Eng. Sci., vol. 14, no. 2, pp. 1–1, 2025, doi: 10.28948/ngumuh.1594355.
ISNAD Baykara, Celalettin. “Experimental Investigation of the Parameters Affecting the Surface Roughness of Materials With Different Thicknesses by Abrasive Water Jetting: Polymer, Composite and Elastomer Materials”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (March 2025), 1-1. https://doi.org/10.28948/ngumuh.1594355.
JAMA Baykara C. Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials. NOHU J. Eng. Sci. 2025;14:1–1.
MLA Baykara, Celalettin. “Experimental Investigation of the Parameters Affecting the Surface Roughness of Materials With Different Thicknesses by Abrasive Water Jetting: Polymer, Composite and Elastomer Materials”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 2, 2025, pp. 1-1, doi:10.28948/ngumuh.1594355.
Vancouver Baykara C. Experimental investigation of the parameters affecting the surface roughness of materials with different thicknesses by abrasive water jetting: Polymer, composite and elastomer materials. NOHU J. Eng. Sci. 2025;14(2):1-.

download