Research Article
BibTex RIS Cite

Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

Bu çalışma kapsamında Cu-Co-Be-Ni alaşımına çözündürme, çok yönlü dövme (ÇYD) ve yaşlandırma işlemlerinin farklı kombinasyonlarını içeren işlem adımları uygulanmıştır. Uygulanan işlem adımları sonrası elde edilen farklı örneklerin mikroyapısal değişimi, mekanik özellikleri ve kırılma enerjisi (darbe sönüm kapasitesi) üzerindeki etkileri sistematik bir şekilde araştırılmıştır. Farklı prosesler kapsamında uygulanan işlem adımlarının alaşımın gerek mekanik gerekse mikroyapısal özellikleri üzerinde oldukça etkili olduğu görüldü. En iyi sertlik ve mukavemet değerleri sırasıyla uygulanan çözündürme, ÇYD ve yaşlandırma işlemleri sonrasında elde edilirken, kırılma tokluğunun ise bu yapıda daha düşük olduğu saptandı. Özetle, ÇYD etkisiyle yapıda oluşturulan tane incelmesi ve dislokasyon artışı ve yaşlandırma sonrası çökelti oluşumuna bağlı olarak alaşımın mekanik özellikleri iyileştirilirken, süneklik ve darbe sönüm kapasiteleri düşürdüğü gözlendi.

Project Number

Herhangi bir proje desteği alınmamıştır.

References

  • P. Scardi, M. Leoni, G. Straffelini and G.D. Giudici, Microstructure of Cu–Be alloy triboxidative wear debris. Acta Materialia, 55, 2531–2538, 2007. https://doi.org/10.1016/j.actamat.2006.11.046
  • M.P. Ahmed and H.S. Jailani, Enhancing wear resistance of cryo treated Cu-Be2 alloy. Silicon, 11, 105–115, 2019. https://doi.org/10.1007/s12633-018-9835-y
  • Properties and Selection: Non-ferrous alloys pure metals, ASM Metals Handbook. 2-10, 403–423, 1992.
  • D.M. Zhao, Q.M. Dong, P. Liu, Z.H. Jin and B.X. Kang, Mechanism of alloying of copper alloy with high strength and high electrical conductivity. Chinese Journal of nonferrous metals, 11(2), 24-27, 2002.
  • T. Hasegawa, Y. Takagawa, C. Watanabe and R. Monzen, Deformation of Cu-Be-Co Alloys by Aging at 593 K. Materials Transactions, 52, 1685-1688, 2011. https://doi.org/10.2320/matertrans.M2011057
  • Y. Tang, Y. Kang, L. Yue and X. Jiao, Mechanical properties optimization of a Cu–Be–Co–Ni alloy by precipitation design. Journal of Alloys and Compounds, 695, 613-625, 2017. https://doi.org/10.1016/j.jallcom.2016.11.014
  • Y. Tang, Y. Kang, L. Yue and X. Jiao, The effect of aging process on the microstructure and mechanical properties of a Cu–Be–Co–Ni alloy. Materials and Design, 85, 332-341, 2015. https://doi.org/10.1016/j.matdes.2015.06.157
  • A. Kızılaslan and I. Altınsoy, The mechanism of two-step increase in hardness of precipitation hardened CuCoNiBe alloys and characterization of precipitates. Journal of Alloys and Compounds, 701,116-121, 2017. https://doi.org/10.1016/j.jallcom.2017.01.101
  • M. Demirtas, Microstructural, mechanical and tribological characterization of Cu-Co-Ni-Be alloy processed via equal channel angular pressing. Materials Today Communications, 28, 10267, 2021. https://doi.org/10.1016/j.mtcomm.2021.102676
  • F. Berto, P. Lazzarin and P. Gallo, High-temperature fatigue strength of a copper–cobalt–beryllium alloy. The Journal of Strain Analysis for Engineering Design, 49 (4), 244-256, 2014. https://doi.org/10.1177/0309324713511804
  • D. Özyürek, M. Yıldırım and T. Tuncay, An Investigation of the Effects of Ageing Parameters on Wear Behaviours and Electrical Conductivity of Cu-Co-Be Alloys. Acta Physica Polonica A, 129(4), 559-561, 2016. https://doi.org/10.12693/APhysPolA.129.559
  • J. Chen, M. Zhang, D. Yang and H. Liang, Comparative study on the Properties of CuCoBe Alloy and CuNiCoBe Alloy. Advanced Materials Research, 988, 145-150, 2014. https://doi.org/10.4028/www.scientific.net/AMR.988.145
  • L. Hefa, S. Naizhen, D. Xueli, R. He and L. Lijun, Form and Effect of Zr in Cu-Co-Be-Zr Alloy. Acta Metallurgica Sinica, 28 (11), 10-14, 1992. https://amse.org.cn/CN/Y1993/V6/I3/153
  • D.A. Avila-Salgado, A. Juárez-Hernández, J. Cabral-Miramontes, and J.L. Camacho-Martínez, Strengthening properties and wear resistance of the Cu-xNi-yCo-Cr-Si alloy by varying Ni/Co and Zr addition. Lubricants, 9 (10), 96, 2021. https://doi.org/10.3390/lubricants9100096
  • Z. Yanjun, S. Kexing, M. Xujun, L. Yong, Y. Shaodan and L. Zhou, Phase transformation kinetics of Cu-Be-Co-Zr alloy during aging treatment. Rare metal materials and engineering, 47 (4), 1096-1099, 2018. https://doi.org/10.1016/S1875-5372(18)30126-7
  • Y.J. Zhou, K.X. Song, J.D. Xing, Z. Li and X.H. Guo, Mechanical properties and fracture behavior of Cu-Co-Be alloy after plastic deformation and heat treatment. Journal of Iron and Steel Research International, 23 (9), 933-939, 2016. https://doi.org/10.1016/S1006-706X(16)30141-8
  • H. Yang, Z. Ma, C. Lei, L. Meng, Y. Fang, J. Liu and H. Wang, High strength and high conductivity Cu alloys: A review. Science China Technological Sciences, 63 (12), 2505-2517, 2020. https://doi.org/10.1007/s11431-020-1633-8
  • J. Wongsa-Ngam, M. Kawasaki and T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. Journal of Materials Science, 48, 4653-4660, 2013. https://doi.org/10.1007/s10853-012-7072-0
  • A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa and V.I. Kopylov, Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta materialia, 50 (7), 1639-1651, 2002. https://doi.org/10.1016/S1359-6454(01)00437-2
  • R. Zhang, Z. Li, X. Sheng, Y. Gao and Q. Lei, Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging. Fusion Engineering and Design, 159, 111766, 2020. https://doi.org/10.1016/j.fusengdes.2020.111766
  • R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Progress in materials science, 45 (2):103-189, 2000. https://doi.org/10.1016/S0079-6425(99)00007-9
  • G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina and S.V. Dobatkin, Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging. Materials Science and Engineering A, 649, 114-122, 2016. https://doi.org/10.1016/j.msea.2015.09.111
  • G. Purcek, H. Yanar, D.V. Shangina, M. Demirtas, N.R. Bochvar and S.V. Dobatkin, Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 742, 325-333, 2018. https://doi.org/10.1016/j.jallcom.2018.01.303
  • P.C. Sharath, Multi directional forging: an advanced deforming technique for severe plastic deformation. Advanced Welding and Deforming, 17, 529-556, 2021. http://dx.doi.org/10.1016/B978-0-12-822049-8.00017-7
  • I. Shakhova, Z. Yanushkevich, I. Fedorova, A. Belyakov and R. Kaibyshev, Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Materials Science and Engineering A, 606, 380-389, 2014. https://doi.org/10.1016/j.msea.2014.03.116
  • G. Kapoor, T. Kvackaj, A. Heczel, J. Bidulská, R. Kočiško, Z. Fogarassy and J. Gubicza, The influence of severe plastic deformation and subsequent annealing on the microstructure and hardness of a Cu–Cr–Zr alloy. Materials, 13 (10), 2241, 2020. https://doi.org/10.3390/ma13102241
  • D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo, The role of annealing twins during recrystallization of Cu. Acta materialia, 55 (12), 4233-41, 2007. https://doi.org/10.1016/j.actamat.2007.03.021
  • Y.J. Zhou, K.X. Song, J.D. Xing and Y.M. Zhang, Precipitation behavior and properties of aged Cu-0.23 Be-0.84 Co alloy. Journal of Alloys and Compounds, 658, 920-930, 2016. https://doi.org/10.1016/j.jallcom.2015.10.290
  • G. Purcek, H. Yanar, M. Demirtas, D.V. Shangina, N.R. Bochvar and S.V. Dobatkin, Microstructural, mechanical and tribological properties of ultrafine-grained Cu–Cr–Zr alloy processed by high pressure torsion. Journal of Alloys and Compounds, 816, 152675, 2020. https://doi.org/10.1016/j.jallcom.2019.152675
  • F. Shahriyari, M.H. Shaeri, A. Dashti, Z. Zarei, M.T. Noghani, J.H. Cho and F. Djavanroodi, Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. Materials Science and Engineering A, 831, 142149, 2022. https://doi.org/10.1016/j.msea.2021.142149
  • P.C.A. Flausino, M.E.L. Nassif, F. Castro-Bubani, P.H.R. Pereira, M.T.P. Aguilar and P.R. Cetlin, Microstructural evolution and mechanical behavior of copper processed by low strain amplitude multi-directional forging. Materials Science and Engineering: A, 756, 474-483, 2019. https://doi.org/10.1016/j.msea.2019.04.075
  • S.H. Hoseini, S. Khalilpourazary and M. Zadshakoyan, Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study. Journal of Materials Engineering and Performance, 29, 975-986, 2020. https://doi.org/10.1007/s11665-020-04598-z

Investigation of the effect of multi-directional forging and aging processes on the impact behavior of Cu-Co-Be-Ni alloy

Year 2025, Volume: 14 Issue: 2, 1 - 1

Abstract

In this study, different combinations of mechanical and thermal processes, such as solution treatment, multi-directional forging (MDF), and aging treatment, were applied to the Cu-Co-Be-Ni alloy. The effects of the applied processes on microstructure, mechanical properties, and fracture toughness of samples were systematically investigated. The obtained results demonstrated that the process steps applied separately or in combination were quite effective on both the mechanical and microstructural properties of the alloy. The highest hardness and strength values were obtained after the combination of solutioned, MDF and aging processes, respectively, while the fracture toughness was found to be lowest in this structure. In summary, it was observed that while the mechanical properties of the alloy were improved due to grain refinement and increasing dislocation density in the structure due to the effect of MDF and precipitation formation after aging, the ductility and impact damping capacities decreased.

Project Number

Herhangi bir proje desteği alınmamıştır.

References

  • P. Scardi, M. Leoni, G. Straffelini and G.D. Giudici, Microstructure of Cu–Be alloy triboxidative wear debris. Acta Materialia, 55, 2531–2538, 2007. https://doi.org/10.1016/j.actamat.2006.11.046
  • M.P. Ahmed and H.S. Jailani, Enhancing wear resistance of cryo treated Cu-Be2 alloy. Silicon, 11, 105–115, 2019. https://doi.org/10.1007/s12633-018-9835-y
  • Properties and Selection: Non-ferrous alloys pure metals, ASM Metals Handbook. 2-10, 403–423, 1992.
  • D.M. Zhao, Q.M. Dong, P. Liu, Z.H. Jin and B.X. Kang, Mechanism of alloying of copper alloy with high strength and high electrical conductivity. Chinese Journal of nonferrous metals, 11(2), 24-27, 2002.
  • T. Hasegawa, Y. Takagawa, C. Watanabe and R. Monzen, Deformation of Cu-Be-Co Alloys by Aging at 593 K. Materials Transactions, 52, 1685-1688, 2011. https://doi.org/10.2320/matertrans.M2011057
  • Y. Tang, Y. Kang, L. Yue and X. Jiao, Mechanical properties optimization of a Cu–Be–Co–Ni alloy by precipitation design. Journal of Alloys and Compounds, 695, 613-625, 2017. https://doi.org/10.1016/j.jallcom.2016.11.014
  • Y. Tang, Y. Kang, L. Yue and X. Jiao, The effect of aging process on the microstructure and mechanical properties of a Cu–Be–Co–Ni alloy. Materials and Design, 85, 332-341, 2015. https://doi.org/10.1016/j.matdes.2015.06.157
  • A. Kızılaslan and I. Altınsoy, The mechanism of two-step increase in hardness of precipitation hardened CuCoNiBe alloys and characterization of precipitates. Journal of Alloys and Compounds, 701,116-121, 2017. https://doi.org/10.1016/j.jallcom.2017.01.101
  • M. Demirtas, Microstructural, mechanical and tribological characterization of Cu-Co-Ni-Be alloy processed via equal channel angular pressing. Materials Today Communications, 28, 10267, 2021. https://doi.org/10.1016/j.mtcomm.2021.102676
  • F. Berto, P. Lazzarin and P. Gallo, High-temperature fatigue strength of a copper–cobalt–beryllium alloy. The Journal of Strain Analysis for Engineering Design, 49 (4), 244-256, 2014. https://doi.org/10.1177/0309324713511804
  • D. Özyürek, M. Yıldırım and T. Tuncay, An Investigation of the Effects of Ageing Parameters on Wear Behaviours and Electrical Conductivity of Cu-Co-Be Alloys. Acta Physica Polonica A, 129(4), 559-561, 2016. https://doi.org/10.12693/APhysPolA.129.559
  • J. Chen, M. Zhang, D. Yang and H. Liang, Comparative study on the Properties of CuCoBe Alloy and CuNiCoBe Alloy. Advanced Materials Research, 988, 145-150, 2014. https://doi.org/10.4028/www.scientific.net/AMR.988.145
  • L. Hefa, S. Naizhen, D. Xueli, R. He and L. Lijun, Form and Effect of Zr in Cu-Co-Be-Zr Alloy. Acta Metallurgica Sinica, 28 (11), 10-14, 1992. https://amse.org.cn/CN/Y1993/V6/I3/153
  • D.A. Avila-Salgado, A. Juárez-Hernández, J. Cabral-Miramontes, and J.L. Camacho-Martínez, Strengthening properties and wear resistance of the Cu-xNi-yCo-Cr-Si alloy by varying Ni/Co and Zr addition. Lubricants, 9 (10), 96, 2021. https://doi.org/10.3390/lubricants9100096
  • Z. Yanjun, S. Kexing, M. Xujun, L. Yong, Y. Shaodan and L. Zhou, Phase transformation kinetics of Cu-Be-Co-Zr alloy during aging treatment. Rare metal materials and engineering, 47 (4), 1096-1099, 2018. https://doi.org/10.1016/S1875-5372(18)30126-7
  • Y.J. Zhou, K.X. Song, J.D. Xing, Z. Li and X.H. Guo, Mechanical properties and fracture behavior of Cu-Co-Be alloy after plastic deformation and heat treatment. Journal of Iron and Steel Research International, 23 (9), 933-939, 2016. https://doi.org/10.1016/S1006-706X(16)30141-8
  • H. Yang, Z. Ma, C. Lei, L. Meng, Y. Fang, J. Liu and H. Wang, High strength and high conductivity Cu alloys: A review. Science China Technological Sciences, 63 (12), 2505-2517, 2020. https://doi.org/10.1007/s11431-020-1633-8
  • J. Wongsa-Ngam, M. Kawasaki and T.G. Langdon, A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. Journal of Materials Science, 48, 4653-4660, 2013. https://doi.org/10.1007/s10853-012-7072-0
  • A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa and V.I. Kopylov, Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta materialia, 50 (7), 1639-1651, 2002. https://doi.org/10.1016/S1359-6454(01)00437-2
  • R. Zhang, Z. Li, X. Sheng, Y. Gao and Q. Lei, Grain refinement and mechanical properties improvements in a high strength Cu–Ni–Si alloy during multidirectional forging. Fusion Engineering and Design, 159, 111766, 2020. https://doi.org/10.1016/j.fusengdes.2020.111766
  • R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Progress in materials science, 45 (2):103-189, 2000. https://doi.org/10.1016/S0079-6425(99)00007-9
  • G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina and S.V. Dobatkin, Optimization of strength, ductility and electrical conductivity of Cu–Cr–Zr alloy by combining multi-route ECAP and aging. Materials Science and Engineering A, 649, 114-122, 2016. https://doi.org/10.1016/j.msea.2015.09.111
  • G. Purcek, H. Yanar, D.V. Shangina, M. Demirtas, N.R. Bochvar and S.V. Dobatkin, Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy. Journal of Alloys and Compounds, 742, 325-333, 2018. https://doi.org/10.1016/j.jallcom.2018.01.303
  • P.C. Sharath, Multi directional forging: an advanced deforming technique for severe plastic deformation. Advanced Welding and Deforming, 17, 529-556, 2021. http://dx.doi.org/10.1016/B978-0-12-822049-8.00017-7
  • I. Shakhova, Z. Yanushkevich, I. Fedorova, A. Belyakov and R. Kaibyshev, Grain refinement in a Cu–Cr–Zr alloy during multidirectional forging. Materials Science and Engineering A, 606, 380-389, 2014. https://doi.org/10.1016/j.msea.2014.03.116
  • G. Kapoor, T. Kvackaj, A. Heczel, J. Bidulská, R. Kočiško, Z. Fogarassy and J. Gubicza, The influence of severe plastic deformation and subsequent annealing on the microstructure and hardness of a Cu–Cr–Zr alloy. Materials, 13 (10), 2241, 2020. https://doi.org/10.3390/ma13102241
  • D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo, The role of annealing twins during recrystallization of Cu. Acta materialia, 55 (12), 4233-41, 2007. https://doi.org/10.1016/j.actamat.2007.03.021
  • Y.J. Zhou, K.X. Song, J.D. Xing and Y.M. Zhang, Precipitation behavior and properties of aged Cu-0.23 Be-0.84 Co alloy. Journal of Alloys and Compounds, 658, 920-930, 2016. https://doi.org/10.1016/j.jallcom.2015.10.290
  • G. Purcek, H. Yanar, M. Demirtas, D.V. Shangina, N.R. Bochvar and S.V. Dobatkin, Microstructural, mechanical and tribological properties of ultrafine-grained Cu–Cr–Zr alloy processed by high pressure torsion. Journal of Alloys and Compounds, 816, 152675, 2020. https://doi.org/10.1016/j.jallcom.2019.152675
  • F. Shahriyari, M.H. Shaeri, A. Dashti, Z. Zarei, M.T. Noghani, J.H. Cho and F. Djavanroodi, Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. Materials Science and Engineering A, 831, 142149, 2022. https://doi.org/10.1016/j.msea.2021.142149
  • P.C.A. Flausino, M.E.L. Nassif, F. Castro-Bubani, P.H.R. Pereira, M.T.P. Aguilar and P.R. Cetlin, Microstructural evolution and mechanical behavior of copper processed by low strain amplitude multi-directional forging. Materials Science and Engineering: A, 756, 474-483, 2019. https://doi.org/10.1016/j.msea.2019.04.075
  • S.H. Hoseini, S. Khalilpourazary and M. Zadshakoyan, Fracture Behavior of Annealed and Equal Channel Angular Pressed Copper: An Experimental Study. Journal of Materials Engineering and Performance, 29, 975-986, 2020. https://doi.org/10.1007/s11665-020-04598-z
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Material Design and Behaviors
Journal Section Articles
Authors

Harun Yanar 0000-0001-5797-885X

Project Number Herhangi bir proje desteği alınmamıştır.
Early Pub Date March 3, 2025
Publication Date
Submission Date December 30, 2024
Acceptance Date February 17, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Yanar, H. (2025). Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 14(2), 1-1. https://doi.org/10.28948/ngumuh.1608101
AMA Yanar H. Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi. NOHU J. Eng. Sci. March 2025;14(2):1-1. doi:10.28948/ngumuh.1608101
Chicago Yanar, Harun. “Çok yönlü dövme Ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının Darbe davranışına Olan Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14, no. 2 (March 2025): 1-1. https://doi.org/10.28948/ngumuh.1608101.
EndNote Yanar H (March 1, 2025) Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14 2 1–1.
IEEE H. Yanar, “Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi”, NOHU J. Eng. Sci., vol. 14, no. 2, pp. 1–1, 2025, doi: 10.28948/ngumuh.1608101.
ISNAD Yanar, Harun. “Çok yönlü dövme Ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının Darbe davranışına Olan Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 14/2 (March 2025), 1-1. https://doi.org/10.28948/ngumuh.1608101.
JAMA Yanar H. Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi. NOHU J. Eng. Sci. 2025;14:1–1.
MLA Yanar, Harun. “Çok yönlü dövme Ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının Darbe davranışına Olan Etkisinin Incelenmesi”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 14, no. 2, 2025, pp. 1-1, doi:10.28948/ngumuh.1608101.
Vancouver Yanar H. Çok yönlü dövme ve yaşlandırma işlemlerinin Cu-Co-Be-Ni alaşımının darbe davranışına olan etkisinin incelenmesi. NOHU J. Eng. Sci. 2025;14(2):1-.

download